

Mathematics (Subjective)**(For All Sessions)****(GROUP-I)**

Time: 2:30 hours

SECTION-I

2. Write short answers of any eight parts from the following: (8x2=16)

- Name the properties used in equations: (a): $100 + 0 = 100$ (b): $1000 \times 1 = 1000$
- Separate into real and imaginary parts, if $Z = \frac{i}{1+i}$
- Write the set: $\{x | x \in N \wedge 4 < x < 12\}$, in descriptive and tabular forms.
- Find values of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$
- If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, find $A + (\bar{A})^t$
- If ω is a cube root of unity, form an equation whose roots are $Z\omega$ and $Z\omega^2$
- Find two consecutive numbers, whose product is 132.
- Solve: $x(x+7) = (2x-1)(x+4)$ by factorization.
- Find the three cube roots of -8

3. Write short answers of any eight parts from the following: (8x2=16)

- Without finding constants write $\frac{x^2-10+13}{(x-1)(x^2-5x+6)}$ into partial fractions.
- Find the n th term of sequence $\left(\frac{4}{3}\right)^2, \left(\frac{7}{3}\right)^2, \left(\frac{10}{3}\right)^2, \dots$
- If $y = \frac{2x}{3} + \frac{4x^2}{9} + \frac{8x^3}{27} + \dots$ and if $0 < x < 3/2$, then show that $x = \frac{2y}{2(1+y)}$
- Find 12th term of H.P: $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}, \dots$
- Find the term involving x^{-2} in the expansion of $\left(x - \frac{2}{x^2}\right)^{13}$
- How many words can be formed from PLANE using all letters when no letter is to be repeated.
- Write formula for nP_r and nC_r .
- A die is thrown. Find the probability that dots on top are prime numbers.
- Expand $(1 - x)^{1/2}$ up to 4 terms by binomial theorem.
- If x is so small that its square and higher powers be neglected, then show that: $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$

4. Write short answers of any nine parts from the following: (9x2=18)

- Define the word "Trigonometry"
- Find $\tan\theta$ and $\cot\theta$ for $\theta = \frac{19\pi}{3}$
- Show that $\sin^2\left(\frac{\pi}{6}\right) + \sin^2\left(\frac{\pi}{3}\right) + \tan^2\left(\frac{\pi}{4}\right) = 2$
- Prove that $\sin(180^\circ + \alpha) \sin(90^\circ - \alpha) = -\sin \alpha \cos \alpha$.
- Prove that $\sin(\alpha + \beta) \sin(\alpha - \beta) = \cos^2 \beta - \cos^2 \alpha$.
- Define the principal tangent function.
- Solve the right triangle ABC in which: $r = 90^\circ$, $b = 68.4$, $c = 96.2$
- Solve the triangle ABC if $\beta = 60^\circ$, $r = 15^\circ$, $b = \sqrt{6}$
- Find the area of triangle ABC for $b = 21.6$, $c = 30.2$, $\alpha = 52^\circ 40'$
- Define the trigonometric equation.
- Find the solution of $\operatorname{Cosec} \theta = 2$ which lie in the interval $[0, 2\pi]$

SECTION-II

Note Attempt any three questions. Each question carries equal marks:

(10x3=30)

5. (a) Find the matrix A if: $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{bmatrix}$

(b) For what values of "m" the roots of the equation $x^2 - 2(1+3m)x + 7(3+2m) = 0$ be equal?

6. (a) Resolve into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$

(b) Find the values of n and r when $\frac{n-1}{C_{r-1}} : \frac{n}{C_r} : \frac{n+1}{C_{r+1}} = 3 : 6 : 11$

7. (a) Sum the series up to n terms $2 + (2+5) + (2+5+8) + \dots$

(b) Use binomial theorem to show that: $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots = \sqrt{2}$

8. (a) Prove that $\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta$

(b) Prove that $\cos 20^\circ + \cos 100^\circ + \cos 140^\circ = 0$

9. (a) The measures of sides of a triangular plot are 413, 214 and 375 meters. Find the measure of corner angles of the plot.