

## 2. Write short answers of any eight parts from the following:

- Does the set  $\{1, -1\}$  possess closure property w. r. t multiplication? Construct the multiplication table.
- If  $\frac{a}{b} = \frac{c}{d}$ , prove that  $ad = bc$
- Factorize  $a^2 + 4b^2$
- Simplify by expressing in the form  $a + bi$  :  $(2 + \sqrt{-3})(3 + \sqrt{-3})$
- If  $B = \{1, 2, 3\}$  then write down the power set of  $B$
- Determine whether the statement  $p \rightarrow (q \rightarrow p)$  is a tautology or not.
- Under what conditions, the determinant of a square matrix A is zero. Write any two conditions.
- If  $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$  and  $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ , find the values of  $a$  and  $b$ .
- Determine whether the matrix  $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 2 \end{bmatrix}$  is hermitian matrix or skew-hermitian matrix.
- Solve the equation:  $x^{-2} - 10 = 3x^{-1}$
- Find four fourth roots of 16.
- Show that the roots of equation will be rational  $px^2 - (p - q)x - q = 0$

(8x2=16)

## 3. Write short answers of any eight parts from the following:

- Define an identity with example.
- Resolve into partial fraction  $\frac{1}{x^2-1}$
- The 7th and 10th terms of an H.P are  $\frac{1}{3}$  and  $\frac{5}{21}$  respectively, find its 14th term.
- Find the sum of first 15 terms of geometric sequence  $1, \frac{1}{3}, \frac{1}{9}, \dots$
- Insert two G.M's between 2 and 16.
- How many terms of the series  $-7 + (-5) + (-3) + \dots$  amount to 65
- A card is drawn from a deck of 52 playing cards. What is the probability that it is a diamond card or an ace?
- Find  $n$ , if  ${}^n C_8 = {}^n C_{12}$
- How many different 4-digit numbers can be formed out of the digits 1, 2, 3, 4, 5, 6, when no digit is repeated?
- Use mathematical induction to prove that  $3 + 3.5 + 3.5^2 + \dots + 3.5^n = \frac{3(5^{n+1}-1)}{4}$  for  $n = 1, 2$
- Calculate by means of binomial theorem  $(2.02)^4$
- Expand upto 4 - terms  $(1 - x)^{1/2}$

(9x2=18)

## 4. Write short answers of any nine parts from the following:

- Find  $r$ , when  $l = 56\text{cm}$ ,  $\theta = 45^\circ$
- Verify that  $\sin 2\theta = 2\sin\theta\cos\theta$  for  $\theta = 45^\circ$
- Write the fundamental law of trigonometry.

iv. Show that  $\cos(\alpha + \beta) \cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta$ .

v. Express  $\sin 5x + \sin 7x$  as a product.

vi. Define the period of trigonometric function.

vii. Write down the domain and range of tangent function.

viii. Find the period of  $\sin \frac{x}{3}$ .

ix. Solve the right triangle  $ABC$ , in which  $\gamma = 90^\circ$ ,  $a = 3.28$ ,  $b = 5.74$ .

x. Define half angle formulas for tangent.

xi. Define Hero's formula.

xii. Find the value of  $\sin(\tan^{-1}(-1))$ .

xiii. Solve the equation  $\sin 2x = \cos x$  where  $x \in [0, 2\pi]$ .

### SECTION-II

Note: Attempt any three questions. Each question carries equal marks:

(10x3=30)

5.(a) Show that  $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$

(b) Prove that  $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$  will have equal roots if  $c^2 = a^2m^2 + b^2$ ;  $a \neq 0, b \neq 0$

6. (a) Resolve into partial fractions  $\frac{6x^3+5x^2-7}{2x^2-x-1}$

(b) The A.M between the two numbers is 5 and their positive G.M. is 4 find the numbers.

7. (a) Prove that  ${}^n C_r + {}^n C_{r-1} = {}^{n+1} C_r$

(b) Find the coefficient of  $x^5$  in the expansion of  $\left(x^2 - \frac{3}{2x}\right)^{10}$

8. (a) Reduce  $\sin^4 \theta$  to an expression involving only functions of multiples of  $\theta$  raised to the first power.

(b) With usual notations, prove that  $r = s \cdot \tan \alpha / 2 \cdot \tan \beta / 2 \cdot \tan \gamma / 2$

9. (a) If  $\cot \theta = \frac{5}{2}$ , and  $\theta$  is in quadrant I, find the value of  $\frac{3\sin \theta + 4\cos \theta}{\cos \theta - \sin \theta}$

(b) Prove that  $\cos^{-1} \frac{63}{65} + 2\tan^{-1} \frac{1}{5} = \sin^{-1} \frac{3}{5}$