

Mathematics (Essay Type)**Time: 2:30 Hours****Marks: 80****Section -I****2. Write short answers of any eight parts from the following.****2x8=16**

i. Separate into real and imaginary parts $\frac{2-7i}{4+5i}$

ii. Factorize $3x^2 + 3y^2$

iii. Simplify $(2,6)(3,7)$

iv. Let $A = \{1, 2, 3, 4\}$, Find the relation $\{(x, y) / x+y < 5\}$ in A

v. Write the inverse and converse of $\sim p \rightarrow \sim q$

vi. Find the value of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$

vii. Find the condition that one root of $x^2 + px + q = 0$ is multiplicative inverse of other.

viii. Evaluate $(1+w+w^2)(1-w+w^2)$.

ix. Solve the equation $ax = b$ where a, b are the elements of a group G

x. Discuss the nature of roots of the equation $2x^2 - 5x + 1 = 0$.

xi. If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then find the values of a and b .

xii. If A and B are square matrices of the same order, then explain why in general $(A+B)(A-B) \neq A^2 - B^2$.

3. Write short answers of any eight parts from the following.**2x8=16**

i. Which term of the A.P, -2, 4, 10, is 148?

ii. Insert three G.M's between 1 and 16.

iii. Write in factorial form $\frac{(n+1)(n)(n-1)}{3.2.1}$.

iv. Find the value of n , when $P_4 : P_3 = 9 : 1$

v. If 5 is the harmonic mean between 2 and b , find b .

vi. Find the number of diagonals of a 6-sided figure.

vii. Evaluate $\sqrt[3]{30}$ correct to two places of decimals.

viii. Expand by binomial theorem $\left(\sqrt{\frac{a}{x}} - \sqrt{\frac{x}{a}} \right)^3$.

ix. Resolve into partial fractions $\frac{7x+25}{(x+3)(x+4)}$.

$$9x - 7$$

x. Resolve into partial fractions without finding the constants $\frac{1}{(x^2+1)(x+3)}$

xi. If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are in G.P, show that the common ratio is $\pm \sqrt{\frac{a}{c}}$.

xii. Check whether $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2 \left(1 - \frac{1}{2^n} \right)$ is true for $n = 1, 2$.

4. Write short answers of any nine parts from the following.

i. Prove that $\sec^2 \theta - \csc^2 \theta = \tan^2 \theta - \cot^2 \theta$. ii. Find the values of $\cos 105^\circ$ taking $(105^\circ = 45^\circ + 60^\circ)$.iii. Prove that $\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan(5x)$.iv. Find the period of $\tan(4x)$.v. Show that $\gamma = \frac{(s-c)}{s} \tan\left(\frac{\gamma}{2}\right)$.vi. In ΔABC $a=3, b=6$ and $B=36^\circ 20'$ Find "b".vii. Find area of ΔABC if $a=18, b=24$ and $c=30$.viii. Find the value of $\cos^{-1}\left(\frac{-1}{2}\right)$.ix. Solve the equation $1 + \cos x = 0$.x. Find the soln of equation $\sec x = -2$ which lies in $[0, 2\pi]$.

xi. What is the circular measure of the angle between the hands of a watch at 4 'o' clock.

xii. Find the values of remaining trigonometric functions when $\cos \theta = \frac{9}{41}$ and the terminal arm of the angle is in quad Ivxiii. If α, β and γ are angles of a triangle ABC then prove that $\tan(\alpha + \beta) + \tan \gamma = 0$.

Section -II

Note: Attempt any three questions from the following.

10x3=30

5. (a) If $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$ verify that $(A^{-1})^T = (A^T)^{-1}$.(b) Solve the system of equations $x + y = 5$; $\frac{2}{x} + \frac{3}{y} = 2$.6. (a) Resolve $\frac{1}{(1-ax)(1-bx)(1-cx)}$ into partial fractions.(b) For what value of n , $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive Geometric Mean (G.M) between a and b.7. (a) Prove that $C_r + C_{r-1} = C_{r+1}$.(b) If x is so small that its cube and higher powers can be neglected then show that $\sqrt{\frac{1+x}{1-x}} \approx 1 + x + \frac{1}{2}x^2$.8. (a) Two cities A and B lie on the equator such that their longitudes are $45^\circ E$ and $25^\circ W$ respectively.

Find the distance between two cities, taking radius of earth as 6400 kms.

(b) Show that $\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta = \cos^2 \beta - \sin^2 \alpha$.9. (a) The sides of a triangle are $x^2 + x + 1, 2x + 1$ and $x^2 - 1$. Prove that the greatest angle of the triangle is 120° .(b) Prove that $2 \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$.