

.hematics (Subjective)

SECTION-I

2. Write short answers of any eight parts from the following: (8x2=16)

i. Express perimeter P of a square as a function of its area A. ii. Evaluate $\lim_{x \rightarrow 0} \frac{\sin x^0}{x}$

iii. Define even function with example.

iv. If $y = x^4 + 2x^2 + 2$, prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$

v. Find derivative by definition $\frac{1}{\sqrt{x}}$

vi. Find $\frac{dy}{dx}$; $xy + y^2 = 2$

vii. Differentiate w.r.t x , $y = x^2 \sec 4x$

viii. Differentiate w.r.t x , $y = \cot^{-1} \left(\frac{x}{a} \right)$

ix. Find $\frac{dy}{dx}$ if $y = x\sqrt{\ln x}$

x. Apply the Maclaurin series to prove that $e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \dots$

xi. Graph the solution set of $2x + y \leq 6$.

xii. Define feasible region.

3. Write short answers of any eight parts from the following: (8x2=16)

i. Evaluate $\int \tan^2 x dx$.

ii. Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)} dx$

iii. Evaluate $\int x \sin x dx$.

iv. Evaluate $\int_{\pi/6}^{\pi/3} \cos t dt$

v. Solve the differential equation $y dx + x dy = 0$

vi. Evaluate $\int \frac{x^2}{4+x^2} dx$

vii. Find the areas between the x -axis and the curve $y = x^2 + 1$ from $x = 1$ to $x = 2$

viii. Find a unit vector in the direction of $\underline{V} = \frac{1}{2} \underline{i} + \frac{\sqrt{3}}{2} \underline{j}$

ix. Find direction cosines of $\underline{V} = 4\underline{i} - 5\underline{j}$

x. Find α , so that vector $\underline{u} = 2 \alpha \underline{i} + \underline{j} - \underline{k}$, $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$ are perpendicular.

xi. Find the area of parallelogram whose vertices are: $A(0, 0, 0)$ $B(1, 2, 3)$ $C(2, -1, 1)$ $D(3, 1, 4)$

xii. A force $\vec{F} = 7\underline{i} + 4\underline{j} - 3\underline{k}$ is applied at $p(1, -2, 3)$. Find its amount about the point $Q(2, 1, 1)$

4. Write short answers of any nine parts from the following: (9x2=18)

i. Is $(\sqrt{176}, 7)$ at a distance of 15 units from the origin?

ii. By means of slopes, show that the point $(-4, 6)$; $(3, 8)$; $(10, 10)$ lie on the same line.

iii. Find K so that the line joining $A(7, 3)$; $B(k, -6)$ and the line joining $C(-4, 5)$, $D(-6, 4)$ are parallel.

iv. Find the equation of the line having y -intercept -7 and slope -5.

v. Find the point of intersection of the lines $x - 2y + 1 = 0$ and $2x - y + 2 = 0$

vi. Find equation of lines represented by $2x^2 + 3xy - 5y^2 = 0$

vii. Find the measure of the angle between the lines represented by $9x^2 + 24xy + 16y^2 = 0$

viii. Find an equation of the circle with ends of diameter at $(-3, 2)$ and $(5, -6)$

ix. Show that the line $2x + 3y - 13 = 0$ is tangent to the circle $x^2 + y^2 + 6x - 4y = 0$

x. Check the position of the point $(5, 6)$ with respect to the circle $x^2 + y^2 = 81$.

xi. Find focus and directrix of the parabola $x^2 = -16y$

xii. Find an equation of ellipse if foci $(-3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$.

xiii. Find equation of hyperbola with given data foci $(0, \pm 9)$, directrices $y = \pm 4$

SECTION-II

Note Attempt any three questions. Each question carries equal marks: (10x3=30)

5. (a) Evaluate: $\lim_{x \rightarrow 0} \frac{\operatorname{Sec} x - \operatorname{Cos} x}{x}$ (b) If $y = \tan(2 \tan^{-1} \frac{x}{2})$, then show that $\frac{dy}{dx} = 4(\frac{1+y^2}{4+x^2})$

6. (a) Evaluate: $\int \frac{dx}{\frac{1}{2} \operatorname{Sin} x + \frac{\sqrt{3}}{2} \operatorname{Cos} x}$ (b) Find equation of line through intersection of $x + 2y + 3 = 0$, $3x + 4y + 7 = 0$ and making equal intercepts on the axes.

7. (a) Find the area bounded by the curve $f(x) = x^3 - 2x^2 + 1$ and x -axis in the 1st quadrant.
(b) Minimize $Z = 3x + y$ subject to the constraints $3x + 5y \geq 15$ $x + 6y \geq 9$ $x \geq 0$, $y \geq 0$

8. (a) If $y = a \cos(\ln x) + b \sin(\ln x)$ prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$
(b) Find the coordinates of the points of intersection of the line $2x + y = 5$ and the circle $x^2 + y^2 + 2x - 9 = 0$, also find the length of intercepted chord.

9. (a) Find the centre foci, eccentricity and vertices of the ellipse $x^2 + 16x + 4y^2 - 16y + 76 = 0$