

Roll No. _____ to be filled in by the candidate.

(For all sessions)

Mathematics (Essay Type)

Time: 2:30 Hours

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

i. If $f(x) = x^2 - x$, find (a). $f(-2)$ (b). $f(x-1)$ ii. Find $\lim_{x \rightarrow 2} \frac{x^3 - 8}{x^2 + x - 6}$ iii. Find $\lim_{\theta \rightarrow 0} \frac{1 - \cos \theta}{\sin \theta}$ iv. Differentiate w.r.t "x". $\left(\sqrt{x} - \frac{1}{\sqrt{x}} \right)^2$ v. Find $\frac{dy}{dx}$ if $3x + 4y + 7 = 0$ vi. Differentiate w.r.t "x" $\cos \sqrt{x} + \sqrt{\sin x}$ vii. Differentiate w.r.t "x" $\cot^{-1} \left(\frac{x}{a} \right)$ viii. If $y = \log_{10} (ax^2 + bx + c)$, then find $\frac{dy}{dx}$ ix. If $y = x^2 \cdot e^x$, then find $\frac{d^2y}{dx^2}$ x. Apply Maclaurin series, Prove that $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \infty$ xi. If $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x^2}$, then find (a). $(fog)(x)$ (b). $(gof)(x)$ xii. Find the intervals in which $f(x)$ is increasing or decreasing $f(x) = \cos x$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$.

3. Write short answers of any eight parts from the following.

2x8=16

i. Using differential find $\frac{dy}{dx}$, if $x^2 + 2y^2 = 16$.ii. Evaluate $\int x \sqrt{x^2 - 1} dx$ iii. Evaluate $\int \frac{(1 - \sqrt{x})^2}{\sqrt{x}} dx$ iv. Evaluate $\int \sin^2 x dx$ v. Evaluate $\int \frac{ax + b}{ax^2 + 2bx + c} dx$ vi. Evaluate $\int e^{3x} \left(\frac{3 \sin x - \cos x}{\sin^2 x} \right) dx$ vii. Solve $\frac{dy}{dx} = \frac{y^2 + 1}{e^x}$.

viii. Find an equation of the vertical line through (-5,3).

ix. Find an equation of the line through (-5,-3), (9,-1)

x. Convert $4x + 7y - 2 = 0$ in normal form.xi. Find the area below the curve $y = 3\sqrt{x}$ and above the x -axis between $x = 1$ and $x = 4$.

xii. Find the mid point of the line segment joining the points A(3,1), B(-2,-4).

4. Write short answers of any nine parts from the following.

2x9=18

i. Graph the solution set by shading of inequality $5x - 4y \leq 20$.ii. Find equation of circle with centre at $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$.iii. Write equation of tangent to the circle $3x^2 + 3y^2 + 5x - 13y + 2 = 0$ at $(1, \frac{10}{3})$.

iv. Find vertex of $x^2 - 4x - 8y + 4 = 0$.

v. Find point of intersection of conics $3x^2 - 4y^2 = 12$ and $3y^2 - 2x^2 = 7$.

vi. Find equation of parabola whose focus is $F(-3,4)$ and directrix is $3x - 4y + 5 = 0$.

vii. Find the unit vector in the same direction of vector $\underline{V} = [3, -4]$.

viii. If $\overline{AB} = \overline{CD}$ find the co-ordinate of the point A when points B,C,D are (1,2)(-2,5) and (4,11) respectively.

ix. Find $|3\underline{v} + \underline{w}|$ if $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$, $\underline{v} = 3\underline{i} - 2\underline{j} + 2\underline{k}$, $\underline{w} = 5\underline{i} - \underline{j} + 3\underline{k}$.

x. Find a vector of length 5 in the direction opposite that of $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$.

xi. Compute $\underline{b} \times \underline{a}$ if $\underline{b} = \underline{i} - \underline{j} + \underline{k}$, $\underline{a} = 2\underline{i} + \underline{j} - \underline{k}$.

xii. Find the work done if the point at which the constant force $\vec{F} = 4\underline{i} + 3\underline{j} + 5\underline{k}$ is applied to an object, moves from $p_1(3,1,-2)$ to $p_2(2,4,6)$.

xiii. If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$.

Section -II

Note: Attempt any three questions from the following.

10x3=30

5. (a) If $f(x) = \begin{cases} 3x-1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 2x & \text{if } x > 1 \end{cases}$, then show $f(x)$ is continuous at $x = 1$.

(b) If $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$, then find $\frac{dy}{dx}$.

6. (a) Find the approximate increase in the volume of a cube of the length of its each edge changes from 5 to 5.02.

(b) Determine the value of P such that the lines $2x - 3y - 1 = 0$, $3x - y - 5 = 0$ and $3x + py + 8 = 0$ meet at a point.

7. (a) Evaluate $\int_2^3 \left(x - \frac{1}{x} \right)^2 dx$.

(b) Minimize $z = 2x + y$ subject to the constraints $x + y \geq 3$, $7x + 5y \leq 35$, $x \geq 0$, $y \geq 0$.

8. (a) Write equations of two tangents from (2,3) to the circle $x^2 + y^2 = 9$.

(b) Prove by vector method $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$.

9. (a) Show that $\cos(x+h) = \cos x - h \sin x - \frac{h^2}{2!} \cos x + \frac{h^3}{3!} \sin x + \dots$

(b) Show that an equation of the parabola with focus at $(a \cos \alpha, a \sin \alpha)$ and directrix $x \cos \alpha + y \sin \alpha + a = 0$ is $(x \sin \alpha - y \cos \alpha)^2 = 4a(x \cos \alpha + y \sin \alpha)$.