Roll No		HSSC-(P-I)-A-2024 (For All Sessions)		Marks : 68
Phy	/sics (Subjective)	Group-II	9	Time: 2:40 hours
		Section-I		(0-0-40)
2.	Write short answers of any eight parts fro			(8x2=16)
j.	Write the dimension of (i) Pressure (ii)	Density. ii. What are t	he dimension and unit of $\sqrt{rac{F imes}{m}}$	1 ?
iii.	What are supplementary units? Define only one unit. iv. Give the drawbacks to use the period of a pendulum as a time standard.			
٧.	Two vectors have unequal magnitudes. Can their sum be zero? Explain.			
vi.	Under what circumstances would a vector have components that are equal in magnitude?			
vii.	If $\vec{A} = 3\hat{i} - 5\hat{j}$, $\vec{B} = 7\hat{k}$ find $(\vec{A} \times \vec{B})$ viii. What is ballistic missile? Define its trajectory.			
ix.	Show that the area between the velocity time graph is numerically equal to the distance covered by the object.			
х.	Explain what is meant by projectile motion. Derive expression for the time of flight.			
xi.	What is the solar constant and what is its value?			
xii.	Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10m. (8x2=16)			
	Write short answers of any eight parts fro	m the following:	1 1,	1 1
i.	Show that orbital angular momentum, $L_0 = mvr$. How can you describe angular equations of motion analogous with linear equations of motion?			
ii.		iv. Can centri	petal force perform any work?	Explain.
iii.	Prove that, $\theta = \frac{s}{r}$ radian.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	plane is lifted up in the air?	. / /
٧.	Fog droplet appears to be suspended in air.	occillator remains constant during	its motion? Is the acceleration of	ever zero? Explain.
	Does the acceleration of a simple harmonic oscillator remains constant during its motion? Is the acceleration ever zero? Explain. Why in S.H.M the acceleration is zero when the velocity is greatest? ix. Prove the relation $U = f\lambda$			
viii. x.	Calculate the formula of the time period of a mass attached to a spring.			
xi.	As a result of a distant explosion an observer senses a ground tremor & then hears the explosion. Explain the time difference.			
xii.	What will be effect on speed of sound if times keeping the pressure of the gas co	the temperature of the gas the onstant?	ough which it passes increase	es to three (6x2=12)
4.	Write short answers of any six parts from	the following:		(0,2-12)
i.	Can visible light produce interference fri	nges? Explain.	ion grating?	
ii.	How would you manage to get more orders of spectra using a diffraction grating? When mirror M ₁ of Michelson interferometer is moved a distance 0,5 mm, 200 fringes are observed, then			
iii.	calculate the wavelength of light used.			
iv.	Explain the difference between angular magnification and resolving power of an optical instrument. How the power is lost in optical fibre through dispersion? Explain			
٧.	What is meant by length of the telescop	e? Explain		
vi. vii.	Why does the pressure of a gas in a car	type increase when it is drive	en through some distance?	
viii.	A thermos flask containing milk as a sys	tem is shaken rapidly. Does t	he temperature of milk rise?	
ix.	Does the efficiency of Carnot engine de	pends on the nature of working	g substance? Explain it.	
		SECTION-II		(02-04)
Note	Attempt any three questions. Each que	stion carries equal marks:		(8x3=24)
5. (a)	Define vector product and also discus	s torque as an example of vec	tor product in detail.	(5)
(b)	Two blocks of masses 2.0 kg and 0.50 kg stored in the spring is 10J. Find the velocit	ies of the block if the spring deliv	els ils ellergy to blocks intervels	eased. (3)
6. (a)	How would you derive a relation for th			
(b)	A 70 kg man runs up a long flight of stairs in		tairs is 4.5 m. calculate his power of	output in watts. (3) (5)
7. (a)	Prove that energy is conserved in sim	of 1.4.4. Irm h ⁻¹ round a curve	of radius 100m. Find the nec	essarv
(b)	A 1000 kg car travelling with a speed centripetal force.			(3) (5)
8. (a)	State first law of thermodynamics and Water flows through a hose, whose in	explain (i) isomermal process	need of 1m/s. What should be	
(b)	the needs if the water is to emerge at	21 m/s?		
9. (a) (b)	Explain the construction and working of A light is incident normally on a grating spectral line for which the deviation in	of an astronomical telescope. In which has 2500 lines per ce	Also derive a relation for its m ntimeter. Compute the wavele	nagnifying power. (5) ength of the (3)