

MATHEMATICS (Subjective) Group - I

Time: 02:30 Hours Marks: 80

SECTION - I

2. Attempt any EIGHT parts:

16

(i) Find the domain and range of $g(x) = \sqrt{x^2 - 4}$ (ii) Find $f^{-1}(x)$ if $f(x) = \frac{2x+1}{x-1}$ (iii) Find $\lim_{x \rightarrow a} \frac{x^n - a^n}{x^m - a^m}$ (iv) Find $\lim_{x \rightarrow 0} \frac{\frac{1}{e^x} - 1}{\frac{1}{e^x} + 1}$, $x > 0$ (v) If $y = x^4 + 2x^2 + 2$, prove that $\frac{dy}{dx} = 4x \sqrt{y-1}$ (vi) Differentiate $\sin x$ w.r.t. $\cot x$ (vii) Find $\frac{dy}{dx}$ if $x^2 - 4xy - 5y = 0$ (viii) If $f(x) = \ln \sqrt{e^{2x} + e^{-2x}}$, find $f'(x)$ (ix) If $y = \ln(\tanh x)$, find $\frac{dy}{dx}$ (x) If $y = x^2 \ln\left(\frac{1}{x}\right)$, find $\frac{dy}{dx}$ (xi) If $x = a(\cos t + \sin t)$, $y = a(\sin t - t \cos t)$, find $\frac{dy}{dx}$ (xii) Apply Maclaurin series prove that $e^{2x} = 1 + 2x + 4 \frac{x^2}{2!} + \dots$

3. Attempt any EIGHT parts:

16

(i) Use differential to approximate the value of $\sqrt{17}$ (ii) Evaluate $\int x \sqrt{x^2 - 1} dx$ (iii) Evaluate $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$ (iv) Evaluate $\int \tan^2 x dx$ (v) Evaluate $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$ (vi) Evaluate $\int \ln x dx$ (vii) Evaluate $\int_0^{\frac{\pi}{6}} x \cos x dx$ (viii) Solve the differential equation $y dx + x dy = 0$ (ix) Find the coordinates of the point that divides the join of $A(-6, 3)$ and $B(5, -2)$ in the ratio $2:3$ internally.(x) By means of slopes that the points $(4, -5)$, $(7, 5)$ and $(10, 15)$ lie on the same line.(xi) Find the equation of a line with y-intercept -7 and slope -5 .

$$y = 2x^2 + 3xy - 5y^2 = 0$$

(Continued P/2)

4. Attempt any NINE parts:

- (i) Graph the solution set of $3x - 2y \geq 6$
- (ii) Find equation of circle with center at $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$
- (iii) Find length of tangent from point $P(-5, 10)$ to circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$
- (iv) Find vertex and directrix of parabola $x^2 = -16y$
- (v) Find equation of parabola with focus $(-3, 1)$ and directrix $x = 3$
- (vi) Find center and foci of $\frac{x^2}{4} - \frac{y^2}{9} = 1$
- (vii) Find eccentricity and vertex of $\frac{y^2}{16} - \frac{x^2}{9} = 1$
- (viii) Write the vector \overline{PQ} in the form $x\mathbf{i} + y\mathbf{j}$, $P(2, 3)$, $Q(6, -2)$
- (ix) Find a unit vector in the direction of $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$
- (x) Find a vector whose magnitude is 4 and is parallel to $2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$
- (xi) Find a real number α so that $\mathbf{u} = \alpha\mathbf{i} + 2\alpha\mathbf{j} - \mathbf{k}$, $\mathbf{v} = \mathbf{i} + \alpha\mathbf{j} + 3\mathbf{k}$ are perpendicular.
- (xii) Compute $\mathbf{b} \times \mathbf{a}$ if $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$
- (xiii) Prove that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = 3\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$

SECTION – II Attempt any THREE questions. Each question carries 10 marks.

5. (a) Evaluate $\lim_{\theta \rightarrow 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$ 05
- (b) Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$ 05
6. (a) Solve $\int e^{-x} \sin 2x \, dx$ 05
- (b) Find the angles of the triangle whose vertices are $A(-5, 4)$, $B(-2, -1)$ and $C(7, -5)$ 05
7. (a) Evaluate $\int_0^{\frac{\pi}{4}} \cos^4 t \, dt$ 05
- (b) Maximize $f(x, y) = x + 3y$ subject to the constraints: $2x + 5y \leq 30$; $5x + 4y \leq 20$; $x \geq 0$, $y \geq 0$ 05
8. (a) Write an equation of circle passing through the points $A(-7, 7)$, $B(5, -1)$, $C(10, 0)$ 05
- (b) Given force $\bar{F} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ acting at a point $A(1, -2, 1)$ find the moment of \bar{F} about the point $B(2, 0, -2)$ 05
9. (a) Show that $y = \frac{\ln x}{x}$ has maximum value at $x = e$ 05
- (b) Show that the ordinate at any point P of the parabola is a mean proportional between the length of the latus rectum and the abscissa of P . 05