Intermediate Part First

Roll No.

03

PHYSICS (Subjective)

GROUP - I

Time: 02:40 Hours

Marks: 68

SECTION - I

2. Write short answers to any EIGHT parts. 16 The period of simple pendulum is measured by a stop watch. What type of errors are possible in the time period? (ii) Write the dimensions of (a) pressure (b) density. (iii) Given that $V = (5.2 \pm 0.1)$ volt. Find its percentage uncertainty. What are supplementary units? Define only one unit. (iv) (v) Under what circumstances would a vector have components that are equal in magnitude? (vi) Suppose the sides of a closed polygon represent vector arranged head to tail rule. What is the sum of these vectors? (vii) Define the two conditions of equilibrium. (viii) Explain the circumstances in which the velocity \vec{v} and acceleration \vec{a} of a car are (a) anti-parallel (b) \vec{v} is zero but a is not zero. Define impulse and show that how it is related to linear momentum? (ix) What is isolated system? State the law of conservation of momentum. (x) What is the effect on the speed of a fighter plane chasing another when it opens the fire? (xii) Explain the difference between laminar flow and turbulent flow. 3. Write short answers to any EIGHT parts. 16 Calculate the work done in kilo joules in lifting a mass of 10kg (at steady velocity) through a vertical height of 10m. (i) What sort of energy is in the (a) compressed spring (b) water in high dam? (ii) (iii) Define escape velocity. Write the formula to find escape velocity. Why does a diver change his body positions before and after diving in the pool? When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain. (v) (vi) Show that $S = r \theta$ (vii) What is the total distance travelled by an object moving with simple harmonic motion in time equal to its period, if its amplitude is A? (viii) Explain the relation between total energy, potential energy and kinetic energy of a body oscillating SHM. (ix) Draw the graph between amplitude and time in damped oscillations. (x) Explain the terms crest, trough, node and antinode. (xi) Explain why sound travels faster in warm air than in cold air. (xii) Speed of sound in air at 0°C is 332ms⁻¹. Find its speed at 15°C. 4. Write short answers to any SIX parts. 12 How is the distance between interference fringes affected by the separation between the slits of Young's experiment? Can fringes disappear? An oil film spreading over a wet footpath shows colours. Explain how does it happen? (iii) Find the grating element of the diffraction grating containing 2006 lines / cm. (iv) Explain briefly the single mode step index fiber. (v) Why would it be advantageous to use blue light with a compound microscope? (vi) Give at least two postulates of kinetic theory of gases. (vii) Derive Boyle's law on the basis of kinetic theory of gases. (viii) Give an example of a process in which no heat is transferred to or from the system but temperature of the system changes? Is it possible to construct a heat engine that will not expel heat into the atmosphere? Explain. SECTION – II Attempt any THREE questions. Each question carries 08 marks. 5. (a) What is a scalar product? Discuss its physical interpretation and write its three characteristics. 05 (b) Ten bricks, each 6.0cm thick and mass 1.5kg lie flat on a table. How much work is required to stack them one on the top of another? 03 6. (a) State and explain law of conservation of linear momentum. 05 (b) A gramophone record turntable accelerates from rest to an angular velocity of 45.0 rev min⁻¹ in 1.60s. What is its average angular acceleration? 03 7. (a) Define Stoke's law and show that the terminal velocity is directly proportional to square of radius of the water droplet. 05 (b) A heat engine performs 100J of work and at the same time rejects 400J of heat energy to the cold reservoirs. What is the efficiency of the engine? 03 8. (a) Discuss the motion of a horizontal mass spring system and find the values of time period, instantaneous displacement and instantaneous velocity. 05 (b) A pipe has a length of 1m. Determine the frequencies of the fundamental and the first two harmonics if the pipe is closed at one end. 03 9. (a) Explain diffraction of x-rays by crystals and derive Bragg's equation. 05 (b)A simple astronomical telescope in its normal adjustment has an objective of focal length 100cm and an eye piece of focal length 5.0cm (i) where is the final image formed (ii) calculate the angular magnification.

1111-XI123-50000