Roll	No.		
------	-----	--	--

MATHEMATICS Time: 30 Minutes

(INTER PART-I) 321-(IV) **OBJECTIVE**

Code: 6197

PAPER: I GROUP: I Marks: 20

Note:

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.

Period of tan 4 x is 1-1-

(A)
$$\frac{\pi}{2}$$

(C)
$$\frac{\pi}{4}$$

Radius of the earth is 2-

If a = -2, b = -6 then A.M between a and b is = 3-

$$(B) -8$$

$$(C) -4$$

Multiplicative inverse of (a, 0) if $a \neq 0$ is 4-

(A)
$$\left(\frac{1}{a}, 0\right)$$

(B)
$$\frac{1}{(a,0)}$$

(C)
$$(-a, 0)$$

(D)
$$(0, \frac{1}{a})$$

Transpose of a matrix $A = [a_{ij}]_{m \times n}$ is $A^t =$ 5-

(A)
$$[a_{ij}]_{m \times m}$$

(B)
$$[a_{ji}]_{m \times n}$$

(C)
$$[a_{ji}]_{n \times m}$$

(D)
$$[a_{ij}]_{n \times m}$$

If $n \in \mathbb{Z}$, then general solution of equation $\sin x = 0$ is 6-

(A)
$$\left\{n\frac{\pi}{2}\right\}$$

(A)
$$\left\{n\frac{\pi}{2}\right\}$$
 (B) $\left\{n\frac{\pi}{3}\right\}$

(C)
$$\left\{n\frac{\pi}{4}\right\}$$

(D)
$$\{n \pi\}$$

(S-a)(S-b)(S-c) =7-

(A)
$$\frac{\Delta}{S}$$

(B)
$$\frac{\Delta^2}{S}$$

(C)
$$\frac{\Delta}{S^2}$$

(D)
$$\frac{S}{\Delta}$$

 $\sin 540^{\circ} =$ 8-

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{\sqrt{2}}$$

(n+2)(n+1)(n) =9-

$$(A) \quad \frac{(n+2)!}{n!}$$

(B)
$$\frac{(n+2)!}{(n-1)!}$$

(C)
$$\frac{(n+2)!}{(n+1)!}$$

(D)
$$\frac{n!}{(n+1)!}$$

 $S_n = \frac{a(r^n-1)}{r-1}$ holds if 10-

(A)
$$r \le 1$$

(B)
$$r = 1$$

(C)
$$r > 1$$

(D)
$$r \ge 1$$

If |A| = 0 then A is 11-

- (A) singular
- (B) diagonal
- (C) rectangular
- (D) symmetric

	5.00	
12-	(7	A -
/-	Cos 2	H =

- (A) $1-\sin^2\theta$
- (B) $1-2\sin^2\theta$
- (C) $1-2\sin\theta$
- (D) $2 \sin^2 \theta 1$

13- Product of the roots of
$$5x^2 - x - 2 = 0$$
 is =

- (A) $\frac{1}{5}$
- (B) $-\frac{1}{5}$
 - (C) $\frac{2}{5}$

(D) $-\frac{2}{5}$

14- If
$$S_n = n(2n-1)$$
, then $a_1 =$

(A) 2

(B) -2

(C) 1

(D) -1

- (A) associative
- (B) commutative
- (C) identity
- (D) closure

16-
$$\tan(\cos^{-1}\frac{\sqrt{3}}{2}) =$$

- (A) $\sqrt{3}$
- (B) $\frac{1}{\sqrt{3}}$
- (C) $1/\sqrt{2}$
- (D) $\sqrt{2}$

17- To find
$$T_8$$
 in the binomial expansion we put $r =$

- (A) 8
- (B) 9

(C) 10

(D) 7

(A) 1

(B) -1

(C) i

(D) -i

19-
$$\frac{x^3 + x + 1}{Q(x)}$$
 will be proper if the degree of $Q(x)$ is =

(A) 1

(B) 2

(C) 3

(D) 4

$$20-2R =$$

- (A) $\frac{a}{\sin \alpha}$
- (B) $\frac{b}{\sin \beta}$
- (C) $\frac{c}{\sin \gamma}$
- (D) all of these

211-(IV)-321-34000