Time:	HEMATICS 30 Minutes	Intermediate Part-I, C OBJEC Code:	CTIVE	Mark
Note:	You have four choicorrect, fill that circ filling two or more	ces for each objective type of the in front of that question no circles will result in zero ma	question as A, B, C and D.	The choice which you to fill the circles. Cutti
1- 1-		ve inverse of complex num		
	(A) $(0,-1)$	(B) (-1,0)	(C) (1,0)	(D) (1 t)
2-	Converse of $p \rightarrow$	a is	(C) (1,0)	(D) (1,1)
	$(A) \sim p \rightarrow q$	(B) $p \rightarrow \sim q$	\bigcirc $q \rightarrow p$	
3-	$(A^{-1})^t =$.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$q \rightarrow p$	(D) $\sim q \rightarrow p$
	(A) A	(B) -A ^t	(C) A ⁻¹ A ^t	$(A^t)^{-1}$
4-	The trivial solution	on of the system $a_1x + b_1y =$		(A)
	(A) (1,0)	·(B) (0,1)	(0,0)	
5-	Sum of all four fo	urth roots of unity is	(0,0)	(D) (1,1)
	(A) 1	(B) -1	(G) ₀	(70)
6		. ,	© 0	(D) i
6-	(A) 12	ion $ax^2 + bx + c = 0$ are rea		
_	(A) $b^2 - 4ac = 0$	B $b^2 - 4ac > 0$	(C) $b^2 - 4ac < 0$	(D) $a^2 - 4ac > 0$
7-	A relation in which	h the equality is true for a	ny value of unknowns is	called
	(A) identity	(B) equation	(C) fraction	(D) conditional
8-	The sequence 3, 6,	12,is	,	(~) Conditional
	(A) A.P.	(B) G.P.	(C) H.P.	(D) infinite
9-	Harmonic mean be	tween 3 and 7 is	(-) AMA :	(D) infinite
	(A) $\frac{5}{21}$	- 01		
	(A) $\overline{21}$	(B) $\frac{21}{5}$	(C) 5	(D) 21
10-	Factorial form of n	(n-1)(n-2) =		
	(A) - n!		(a) nl	1
	$(A) \frac{n!}{(n-1)!}$	(B) $\frac{n!}{(n-2)!}$	\bigcirc $\frac{n!}{(n-3)!}$	(D) $\frac{n!}{(n+3)!}$
11-	If A and B are inde	pendent events and P(A) =	, -/-	
	(A) 0.56	8		$(A \cap B) =$
	(A) 0.36	(B) $\frac{8}{7}$	(C) $\frac{7}{8}$	(D) 0.1
12-	The sum of exponer	oto of a and bit		
	(A) 1	nts of a and b in every term		
		(B) 0	(C) 2n	(II) n
13-	The expansion of (1	+2x) ⁻³ is valid only if		
	(A) $ x < 2$	\bigcirc x < $\frac{1}{2}$	(C) $ x < \frac{1}{2}$	mi 1
		. 2	3	(D) $ x < \frac{1}{6}$
14-	If length of arc and a	adius of circle are measur	ed in cm then unit of O	is
	(A) degree	(B) radians	(C) cm ²	(D) cm
15-	$\cos 2\alpha =$			
	(A) $2\cos^2\alpha + 1$	\bigcirc 2Cos ² $\alpha \sim 1$	(C) $2\sin^2\alpha - 1$	(D) $2\sin^2\alpha + 1$
		•	(c) 25m u-1	(D) 23III a+1
		(2)		
		(2)	my C(-v) is called	
16-	The smallest positive	we number P for which f((x + P) = I(x) is called	period
	(A) domain	(B) co-domain	(C) range	period
	• •	$C, c^2 = $		
17-	In any triangle AB	0, 0 =	(B) $a^2 + b^2 - 2ab$	Cosγ
	(A) $a^2 + c^2 - 2ac$		(D) $a^2 + b^2 - 2ab$	
	(C) $b^2 + c^2 - 2bc$	Cosa	(- /	
18-	Point of intersection of the angle bisectors of a triangle is called			
100	(A) circum-centre		(C) ex-centre	(D) ortho-centre
19-	$2Tan^{-1}A =$		(24) (2A
	A	(B) $Tan^{-1} \frac{2A}{1+A^2}$	\bigcirc Tan ⁻¹ $\frac{2A}{A}$	$(D) Tan^{-1} \left(\frac{2A}{2-A}\right)$
	(A) Tan	(1) 1411 1 1 1 2	(1-A	/
	$1-A^2$, I+A		
	1-74			
20-	1-74	0 then x =	π 3π	(D) $\frac{\pi}{4}, \frac{3\pi}{4}$