PAPER: I

GROUP: I Marks: 80

Atolia

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Prove
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 by rules of addition.

ii- Factorize:
$$a^2 + 4b^2$$

iii- Simplify
$$(2+\sqrt{-3})(3+\sqrt{-3})$$

iv- If
$$U = \{1, 2, 3, \dots, 20\}$$
 and $A = \{1, 3, 5, \dots, 19\}$ verify $A \cup A' = U$

v- Write inverse and contrapositive of the conditional
$$\sim p \rightarrow q$$

vi- For
$$A = \{1, 2, 3, 4\}$$
, find the relation $\{(x, y) | x + y > 5\}$ in A

vii- Find x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

viii- Without expansion show that
$$\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$$

ix- Find the inverse of matrix
$$A = \begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$$

x- Write second property of cube roots of unity without proof.

Xi- Find the remainder by using remainder theorem when first polynomial is divided by second polynomial $x^2 + 3x + 7$, x + 1

xii- Show that the roots of the equation $(p+q) x^2 - px - q = 0$ will be rational.

3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Write
$$\frac{x^2+x-1}{(x+2)^3}$$
 in form of partial fractions without finding the constants.

Write
$$\frac{1}{(x+1)^2(x^2-1)}$$
 in form of partial fractions without finding the constants.

iii- Write 1st four terms of the sequence
$$a_n = (-1)^n(2n-3)$$

v- Find the sum of infinite geometric series 2,
$$\sqrt{2}$$
, 1,.....

vi- Find the 9th term of harmonic sequence
$$\frac{1}{3}$$
, $\frac{1}{5}$, $\frac{1}{7}$,......

vii- There are 5 green and 3 red balls in a box, one ball is taken out. Find the probability that the ball is green.

viii- Write in factorial form
$$(n+2)(n+1)n$$

ix- How many signals can be given by 5 flags of different colours using 3 flags at a time.

xi- Expand $(4-3x)^{1/2}$ upto three terms taking value of x such that (s.t) the expansion is valid.

xii- Determine the middle term in the expansion of
$$\left(\frac{1}{x} - \frac{x^2}{2}\right)^{12}$$
 (Turn over)

i- If $\sin \theta = -\frac{1}{\sqrt{2}}$ and the terminal arm is not in quadrant III, find the value of $\cos \theta$

ii- Verify that
$$\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1:2:3:4$$

iii- Prove that $\sec^2 A + \csc^2 A = \sec^2 A \cdot \csc^2 A$, where $A \neq \frac{n\pi}{2}$, $n \in \mathbb{Z}$

iv- If α , β , γ are the angles of a triangle, then prove that $\sin(\alpha + \beta) = \sin \gamma$

v- Prove that
$$\cos(\alpha + 45^\circ) = \frac{1}{\sqrt{2}}(\cos \alpha - \sin \alpha)$$

vi- Prove that
$$\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$$

vii- Find the period of $\tan \frac{x}{7}$

viii- When the angle between the ground and the sun is 30°, flag pole casts a shadow of 40 m long. Find the height of the top of the flag.

ix- Find the measure of the greatest angle, if sides of the triangle are 16, 20, 33

x- Find the area of the triangle when
$$b = 25.4$$
, $\gamma = 36^{\circ}41'$, $\alpha = 45^{\circ}17'$

xi- Prove that $\tan^{-1} \frac{5}{12} = \sin^{-1} \frac{5}{13}$

xii- Find the general solution of the trigonometric equation $\sec x = -2$

xiii- Solve the trigonometric equation and write the solution in the interval $[0, 2\pi]$ when $2 \sin^2 \theta - \sin \theta = 0$

SECTION II

5- (a) Show that
$$\begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c)(a-b)(b-c)(c-a)$$
 5

(b) Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2 (1 + m^2)$

6- (a) Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions.

(b) If $y = \frac{x}{2} + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots$ and 0 < x < 2, then prove that $x = \frac{2y}{1+y}$

7- (a) Two dice are thrown. What is the probability that the sum of the number of dots appearing on them is 4 or 6?

appearing on them is 4 or 6?

(b) If x is so small that its square and higher powers can be neglected then

show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$

8- (a) Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$ where '\theta' is not an odd multiple of $\frac{\pi}{2}$

(b) Prove without using tables/calculator that $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$ 5

9- (a) P and Q are two points in line with a tree. If the distance between P and Q be 30 m and the angles of elevation of the top of the tree at P and Q be 12° and 15° respectively, find the height of the tree.

(b) Show that $2 \tan^{-1} \frac{2}{3} = \sin^{-1} \frac{12}{13}$