PAPER: I

GROUP - I Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II.

SECTION-I

Write short answers to any EIGHT questions: 2.

 $(2 \times 8 = 16)$

- i- Define binary operation.
- Show that the set $\{1, -1\}$ possess closure property with respect to multiplication.
- Simplify the following $(-1)^{\frac{-21}{2}}$
- Graph the number -5 6i on complex plane. iv-
- Write the union and intersection of two sets A and B in set builder notation.
- Write down the difference between induction and deduction. vi-

vii- Find the value of x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$$

- If A and B are non-singular matrices then show that $(AB)^{-1} = B^{-1}A^{-1}$
- Write down two properties of determinant.
- x- Solve the equation : $x^{1/2} x^{1/4} 6 = 0$
- xi- Show that: $x^3 + y^3 + z^3 = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$
- Show that (x-2) is a factor of $x^4 13x^2 + 36$

Write short answers to any EIGHT questions: 3.

 $(2 \times 8 = 16)$

- What is the difference between proper rational fraction and improper rational fraction?
- Find value of A and B if $\frac{x^2+1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$
- Which term of the A.P 5, 2, -1, is -85? 111-
- Find the sum of infinite G.P: 2, $\sqrt{2}$, 1,
- Sum the series: 3 + 5 7 + 9 + 11 13 + 15 + 17 19-to 3n terms.
- vi- If $\frac{1}{K}$, $\frac{1}{2K+1}$ and $\frac{1}{4K-1}$ are in harmonic sequence, find K.
- vii- How many permutations of the letters of the word PANAMA can be made, if P is to the first letter in each arrangement?
- viii- Find the number of the diagonals of a 6-sided figure.
- ix- Two dice are thrown twice. What is probability that sum of dots shown in throw is 7?
- x- Prove that the statement is true: $n! > n^2$ for n = 4, 5
- xi- Use Binomial theorem, find the value of (.98)1/2 up to three decimal places.
- Find the term involving a^4 in the expansion of $\left(\frac{2}{x} a\right)^9$

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Define Radian.
- $\sin\theta = \frac{12}{13}$, terminal arm of the angle is in quadrant I. Find the values of Sec θ , Cos θ
- iii- Prove that $\cos\left(\frac{\pi}{2} \beta\right) = \sin\beta$

(Turn Over)

iv- Prove that
$$\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$$

- v- Express the product Sin 12° Sin 46° as sum or difference.
- vi- Prove that period of tangent is π
- vii- Find the period of 3Sinx
- viii- Draw the graph $y = -\sin x$, $x \in [-2\pi, 2\pi]$
- ix- Find the value of θ if $\cos\theta = 0.9316$
- x- Solve the right angle triangle in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ}20^{\circ}$, a = 243
- xi- Solve the triangle ABC, if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$
- xii- Find the value of Cos⁻¹(1/2)
- xiii- Solve the equation : $\sin^2 x + \cos x = 1$

SECTION-II

5- (a) Show that
$$\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2(a+b+c+\lambda)$$
 5

- (b) If α and β are the roots of $x^2 3x + 5 = 0$, form the equation whose roots are: $\frac{1-\alpha}{1+\alpha} \text{ and } \frac{1-\beta}{1+\beta}$
- 6- (a) Resolve $\frac{x^2}{(x^2+4)(x+2)}$ into partial fractions.
- (a) Resolve $(x^2 + 4)(x + 2)$ (b) Find a_n of a G.P if $a_4 = \frac{8}{27}$ and $a_7 = -\frac{64}{729}$
- 7- (a) Prove that: ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$
 - (b) Show that : $\frac{n^3 + 2n}{3}$ represents an integer $\forall n \in \mathbb{N}$
- 8- (a) Prove that $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 7\theta} = \tan 4\theta$
 - -(b) With usual notations, prove that $a^2 = b^2 + c^2 2bcCos\alpha$ 5
- 9- (a) If $\tan \theta = -\frac{1}{3}$, and terminal arm of angle θ is in quadrant II. Find the values of remaining trignometric functions.
 - **(b)** Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} + \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$

5

5