athematics me: 30 Minutes		(INTER PART-I) <u>Code: 619</u> OBJECTI	<u> 6</u>	GROUP: II	PAPER: I Marks: 20			
rte:	is correct, fill that cir or filling two or more	es for each objective type of cle in front of that question e circles will result in zero	number. Use mark in that que	marker or pen to fill t	ne circles. Cuming			
52	given in objective typ	pe question paper and leave	e others blank.					
1-	Expansion of (1-	$(+x)^{\frac{-1}{4}}$ is valid only if						
		(B) $ x < 1$	(C) x	< -1 (D	x > -1			
2-	The 8 th term of se	equence $1, -3, 5, -7$ is						
	(A) 15	(B) -15	(C) 14	(D)) -14			
3-	A reciprocal equation remains unchanged when variable x is replaced by							
	$(A) -\frac{1}{x}$	(B) $\frac{1}{x}$	(C) $\frac{1}{x^2}$	(D) -x			
4-	The solutions of equation $1 + \sin \theta = 0$ are in quadrant							
	(A) I and IV	(B) I and III	(C) II	and IV (D) III and IV			
5-	With usual notations, radius r of inscribed circle is given by							
	(A) $\frac{\Delta}{s}$	(B) $\frac{s}{\Delta}$	(C) $\frac{2}{s}$	$\frac{\Delta}{-c}$ (D	$\frac{4\Delta}{abc}$			
6-	If $\tan \theta = \frac{1}{\sqrt{3}}$ and θ is in III quadrant then $\cot \theta$ equals							
	(A) $\sqrt{3}$ $^{n-1}C_r + ^{n-1}C_{r-1}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{2}$	(E	$-\frac{1}{2}$			
7-								
	(A) $^{n+1}C_r$	(B) $^{n+1}C_{r+1}$	(C) ⁿ C	(D)	$^{n-1}C_r$			
8-	$\sin(\cos^{-1}\frac{1}{2}) \ \text{eq}$	uals						
8	$(A) \frac{\sqrt{3}}{2}$	(B) $\frac{1}{2}$	(C) =	$\frac{\sqrt{3}}{2}$ (I	$\frac{-1}{2}$			
9-	$(x-1)^2 = x^2 - 2$	2x + 1 is called						
	(A) equation	(B) inequality	(C) ide	entity (D) polynomial			
10-	For any two matr	ices A and B then (A	B) ^t equals					
	(A) AB	(B) $A^t B^t$	(C) B ^t	A ^t (D) BA			
11-	Additive inverse	67 to 58	(-) 2	(D	,			
• • •	(A) 2	(B) 1	(C) $\frac{1}{a}$	(D)) –a			

12-	With usual notations, the value of $a + b + c$ is						
	(A) s	(B) 2s	(C)	3s	(D) $\frac{s}{2}$		
13-	cos 315° equals						
	(A) tan (-45°)	(B) tan 45°	(C)	sin 45°	(D) cosec 45°		
14-	If A and B are disjoint then P(A∪B) equals						
6	(A) $P(A) - P(B)$	(B) P(A) P(B)	(C)	$\frac{P(A)}{P(B)}$	(D) $P(A) + P(B)$		
15-	If $\begin{bmatrix} \lambda & 4 \\ 3 & 2 \end{bmatrix}$ is singular	ar then λ is equal to					
	(A) 2	(B) 6	(C)	4	(D) 8		
16-	The middle term in expansion of $(a + x)^n$ when n is even is						
	(A) $\left(\frac{n}{2}+1\right)$ th term	(B) $\left(\frac{n}{2}-1\right)$ th term	(C)	$\left(\frac{n}{2}\right)$ th term	(D) $\left(\frac{n+1}{2}\right)$ th term		
17-	Period of cosec 10x is						
	$(A) \frac{\pi}{10}$	(B) $\frac{2\pi}{5}$	(C)	$\frac{\pi}{5}$	(D) $\frac{4\pi}{5}$		
18-	The domain of relation $f = \{(a, 1), (b, 1), (c, 1)\}$ is						
	(A) $\{a, b, c\}$	(B) {a}	(C)	{b}	(D) {1}		
19-	If ω is complex cube root of unity then ω^{15} equals						
	(A) 1	(B) zero	(C)	ώ	(D) -ω		
20-	The arithmetic mean	between $\frac{1}{2}$ and $\frac{1}{4}$ is		*			
	(A) $\frac{3}{8}$	(B) $\frac{3}{4}$	(C)	18	(D) $-\frac{1}{8}$		
					212-(III)-319-3000		
		3			**************************************		