thematics
1e: 2:30 hours

(INTER PART-I) 319 SUBJECTIVE

GROUP: II

PAPER: I Marks: 80

te: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Separate into real and imaginary parts $\frac{i}{1+i}$
- ii- Simplify (i) 101
- iii- Show that $\forall z \in c$, $(\overline{z})^2 + z^2$ is a real number.
- iv- For the conditional $p \rightarrow q$. Write its inverse and converse.
- v- Define disjunction of two statements p and q
- vi- If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1} a^{-1}$
- vii- Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$
- viii- Find the value of λ if $A = \begin{bmatrix} 4 & \lambda \\ 7 & 3 \end{bmatrix}$ is singular.
 - ix- Define upper triangular matrix.
 - x- Reduce $x^{-2} 10 = 3x^{-1}$ into quadratic form.
 - xi- Show that $(x^3 y^3) = (x y)(x \omega y)(x \omega^2 y)$, where ω is a cube root of unity.
- xii- Show that roots of $(p+q) x^2 px q = 0$ are rational.

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fractions.
- ii- Define proper rational fraction.
- iii- For the identity $\frac{2x-3}{x(2x+3)(x-1)} = \frac{A}{x} + \frac{B}{2x+3} + \frac{C}{x-1}$ calculate the value of A and C.
- iv- Write the first four terms of the sequence $a_n = \frac{n}{2n+1}$
- v- How many terms are there in A.P., in which $a_1 = 11$, $a_n = 68$, d = 3
- vi- Sum the series $\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + \dots$ to n terms.
- vii- Find the 12^{th} term of the G.P 1+i, 2i, 2(1-i),
- viii- Find the sum of the following infinite geometric series $4+2\sqrt{2}+2+\sqrt{2}+1+...$
- ix- How many arrangements of the letters of the word 'MATHEMATICS', taken all together, can be made?
- x- Prove the formula for n = 1, 2 $1 + 2 + 4 + \dots + 2^{n-1} = 2^n 1$
- xi- Calculate (2.02)4 by means of binomial theorem.
- xii- Expand $(1+x)^{\frac{1}{3}}$ upto 4-terms, taking the values of x such that the expansion is valid.

(Turn over)

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

5

5

5

5

5

5

5

5

i- What is the length of the arc intercepted on a circle of radius 14 cm by the arms of a central angle of 45°?

ii- Evaluate:
$$\frac{1-\tan^2\frac{\pi}{3}}{1+\tan^2\frac{\pi}{3}}$$

iii- Prove that:
$$\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$$

iv- Prove that:
$$\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$$

v- Prove that:
$$\tan 2a = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

vi- Find the value of cos
$$2\alpha$$
 when $\sin \alpha = \frac{12}{13}$ where $0 < \alpha < \frac{\pi}{2}$

vii- Find the period of
$$\tan \frac{x}{3}$$

ix- Find the area of the triangle ABC, given three sides
$$a = 524$$
, $b = 276$, $c = 315$

x- Show that:
$$r_1 = s \tan \frac{\alpha}{2}$$

xi- Prove that:
$$\sin^{-1}x = \frac{\pi}{2} - \cos^{-1}x$$

xii- Find the solution of equation:
$$\sin x = \frac{-\sqrt{3}}{2}$$

xiii- Solve the equation:
$$\sin^2 x + \cos x = 1$$

SECTION II

5- (a) Prove that all 2 x 2 non-singular matrices over the real field form a non-abelian group under multiplication.

(b) For what value of n,
$$\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$$
 is the positive geometric mean between a and b?

5

$$3x_1 + x_2 - x_3 = -4$$

$$x_1 + x_2 - 2x_3 = -4$$

$$-x_1 + 2x_2 - x_3 = 1$$

(b) The members of a club are 12 boys and 8 girls. In how many ways can a committee of 3 boys and 5 girls be formed?

7- (a) Solve
$$4.2^{2x+1} - 9.2^x + 1 = 0$$

(b) Find the term involving
$$a^4$$
 in the expansion of $\left(\frac{2}{x} - a\right)^9$

8- (a) Prove that:
$$\sin^6 \theta + \cos^6 \theta = 1 - 3 \sin^2 \theta \cos^2 \theta$$

(b) Reduce
$$\sin^4 \theta$$
 to an expression involving function of multiple of θ raised to the first power.

9- (a) The sides of a triangle are
$$x^2 + x + 1$$
, $2x + 1$, $x^2 - 1$. Prove that the greatest angle of the triangle is 120° .

(b) Prove that:
$$\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} - \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$$