MATHEMATICS Time: 2:30 hours Intermediate Part-I, Class 11th (1stA 323) SUBJECTIVE

) PAPER: I

GROUP: II Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II. (47) SECTION-I

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- State the DeMoiver's theorem.
- ii- Factorize 9a²+16b²
- iii- Write down two proper subsets of {0, 1}
- iv- Construct truth table $(p \rightarrow \sim p) \lor (p \rightarrow q)$
- v- Define unary and binary operations.

vi- Find matrix X if
$$\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$$

vii- Solve the following system of linear equations $3x_1 - x_2 = 1$, $x_1 + x_2 = 3$

viii- If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
, verify that $(A^{-1})^t = (A^t)^{-1}$

- ix- Solve the equation $x^{2/5} + 8 = 6x^{1/5}$
- x- Find four fourth roots of 16
- xi- Discuss the nature of the roots of a quadratic equation $x^2 + 2x + 3 = 0$
- xii- When the polynomial $x^3 + 2x^2 + kx + 4$ is divided by x 2, the remainder is 14. Find the value of k

3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Define rational fraction.
- ii- Write down the first four terms of the sequence, if $a_n = n \cdot a_{n-1}$, $a_1 = 1$
- iii- Find the 13^{th} term of the sequence x, 1, 2-x, 3-2x,
- iv- Find the nth term of geometric sequence, if $\frac{a_5}{a_3} = \frac{4}{9}$ and $a_2 = \frac{4}{9}$
- v- Sum to n terms of the series 3 + 33 + 333 +
- vi- Find the 9th term of H.P. $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$,
- vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$
- viii- What is the probability that a slip of numbers divisible by 4 is picked from the slips bearing numbers 1, 2, 3,, 10?
- ix- If sample space S={1,2,3,.....,9}, event A={2,4,6,8} and event B={1,3,5}. Find P(A U B)
- x- Prove by mathematical induction $r + r^2 + r^3 + \dots + r^n = \frac{r(1-r^n)}{1-r}$, $r \neq 1$
- xi- Find the 6th term in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- xii- Evaluate $\sqrt[3]{30}$ correct to three places of decimal.

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Write down any two fundamental trigonometric identities.
- ii- In which quadrant the terminal arm of the angle lie when $\sin \theta < 0$ and $\cos \theta > 0$
- iii- Verify Sin60°Cos30° Cos60°Sin30° = Sin30°
- iv- Prove that $\sin 3\alpha = 3\sin \alpha 4\sin^3 \alpha$
- v- Prove that $\cot \alpha \tan \alpha = 2 \cot 2\alpha$
- vi- Express $Sin(x + 30^{\circ}) + Sin(x 30^{\circ})$ as product.

vii- Write domain and range of Sin0

viii- A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is 5 m from the wall. Find its length.

ix- Find the area of the triangle ABC, if a = 18, b = 24, c = 30

x- Prove that $r_1 r_2 r_3 = rs^2$

xi- Show that $Cos^{-1}(-x) = \pi - Cos^{-1}x$

xii- Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$

xiii- Prove the identity $Sin^{-1}x = \frac{\pi}{2} - Cos^{-1}x$

SECTION-II

Note: Attempt any three (3) questions.

5- (a) Reduce the matrix
$$\begin{bmatrix} 2 & 3 & -1 & 9 \\ 1 & -1 & 2 & -3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$$
 into echelon form 5

(b) Solve the equation
$$(x + 4)(x + 1) = \sqrt{x^2 + 2x - 15 + 3x + 31}$$

6- (a) Resolve
$$\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)(x-6)}$$
 into partial fractions.

(b) Find the values of n and r, when
$${}^{n}C_{r} = 35$$
 and ${}^{n}P_{r} = 210$

7- (a) Find n so that
$$\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$$
 may be H.M. between 'a' and 'b'.

(b) Use mathematical induction to prove the formula for every positive integer n $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left[1 - \frac{1}{2^n}\right]$

8- (a) If
$$\csc \theta = \frac{m^2 + 1}{2m}$$
 and $m > 0 \left(0 < 0 < \frac{\pi}{2} \right)$,

Find values of remaining trigonometric ratios.

(b) Prove that
$$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$$

9- (a) Prove that
$$\Delta = 4Rr \cdot Cos \frac{\alpha}{2} \cdot Cos \frac{\beta}{2} \cdot Cos \frac{\gamma}{2}$$

(b) Prove that
$$\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$$

214-1stA 323-29000