Intermediate Part-I, Class 11th (1stA 324) **TEMATICS** Time: 2:30 hours

PAPER: I

GROUP: II Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II. SECTION-I

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- Write trichotomy and transitive properties of inequalities of real numbers.
- ii- Simplify $(2, 6) \div (3, 7)$
- iii- Find the modulus of 3 + 4i
- Express the complex number $1 + i\sqrt{3}$ in polar form
- Write inverse, converse and contrapositive of the conditional $\sim p \rightarrow \sim q$
- vi- Define groupoid.

vii- If
$$A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$$
, show that $A^4 = I_2$

viii- Without expansion verify that
$$\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$$

- If A and B are non-singular matrices, then show that $(AB)^{-1} = B^{-1}A^{-1}$
- Find the three cube roots of -27
- Use the factor theorem to determine if x 1 is a factor of $x^2 + 4x 5$
- xii- If α , β are the roots of $3x^2 2x + 4 = 0$, find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$

Write short answers to any EIGHT questions: 3.

 $(2 \times 8 = 16)$

- Resolve into Partial Fractions $\frac{3x}{(x-1)(x+2)}$
- ii- Define the term Partial Fraction.
- iii- Write the first four terms of the sequence, if $a_n a_{n-1} = n+2$, $a_1 = 2$
- If 5, 8 are two A.Ms between a and b, find a and b.
- Find the sum of infinite Geometric Series $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots$
- Find the 8th term of H.P; $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$,......
- vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$
- viii- Find the value of n when 11 Pn = 11.10.9
- ix- What is the probability that a slip of numbers divisible by 4 are picked from the slips bearing numbers 1,2,3,, 10?
- x- Prove that the inequality $n^2 > n + 3$ for n = 3, 4
- xi- Calculate (9.9)⁵ by means of Bionomial Theorem.
- xii- Expand $(1-x)^{1/2}$ upto 4 terms.

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Find r when $\ell = 5$ cm, $\theta = \frac{1}{2}$ radian
- Evaluate $\frac{\tan\frac{\pi}{3} \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3} \cdot \tan\frac{\pi}{6}}$
- iii- Prove that $Sin(\alpha + \beta) Sin(\alpha \beta) = Cos^2\beta Cos^2\alpha$

(Turn Over)

iv- Prove that
$$\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$$

- v- Express as product : $\cos 7\theta \cos \theta$
- vi- Define Periodicity.
- vii- Find period of $3\cos\frac{x}{5}$
- viii- Draw graph of Sinx when $x \in [0, \pi]$
- ix- Find a and c for the right angle triangle ABC, when $\alpha = 58^{\circ}13'$, b = 125.7, $\gamma = 90^{\circ}$
- x- A vertical pole is 8m high and length of its shadow is 6m. What is angle of elevation of the sum at that moment?
- xi- Solve the triangle ABC if b = 125, $\gamma = 53^{\circ}$, $\alpha = 47^{\circ}$
- xii- Show that $tan(Sin^{-1}x) = \frac{x}{\sqrt{1-x^2}}$
- xiii- Solve the trignometric equation $Sinx = -\frac{\sqrt{3}}{2}$

SECTION-II

5- (a) Solve the system of linear equations by Cramer's Rule:

$$2x + 2y + z = 3$$
$$3x - 2y - 2z = 1$$

$$5x + y - 3z = 2$$

- **(b)** Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $c = \frac{a}{m}$, $m \neq 0$
- 6- (a) Resolve $\frac{x^2 + x 1}{(x + 2)^3}$ into partial fractions.
 - (b) The sum of an infinite Geometric Series is 9 and the sum of the squares of its terms is $\frac{81}{5}$.

 5 Find the series.
- 7- (a) Two dice are thrown. E_1 is the event that the sum of their dots is an odd number and E_2 is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$
 - **(b)** Find the term independent of x in expansion of $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$
- 8- (a) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$
 - (b) Show that $r_2 = 4R \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}$
- 9- (a) Find x if $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$
 - **(b)** Prove that $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$

5

5

5

5

5

5