MATHEMATICS Time: 30 Minutes		0 Minutes	Intermediate Part-II, Class 12 th (1 st A 424-IV) OBJECTIVE Code: 8197		GROUP: I PAPER: II Marks: 20
	Note:	D. Cand D. The choice which you think			
	1- 1-	$I - \int Secx Tanx dx = ?$			
		(A) Secx + c	(B) $Sec^2x + c$	(C) Tanx + c	(D) $\ln Secx + tanx + c$
	2-		rabola $x^2 = -16y$ is	(C) (4,0)	(D) (-4,0)
		(A)(0,-4)	(B)(0,0)	(C) (4,0)	(1)(-1,0)
	3-	$\int x dx$ is			/
		(A) 0	(B) 1	(C) 2	(D) 4
	4-		y = f(x) at $x = a$ represents slo		
		(A) tangent line at $x = a$ (B) secant line (C) perpendicular line (D) straight line			(D) straight line
	5-		ector <u>v</u> along vector <u>u</u> is		
		(A) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{ \underline{\mathbf{u}} }$	(B) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{ \underline{\mathbf{v}} }$	(C) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{u}}}{ \underline{\mathbf{u}} }$	(D) $\frac{\underline{\mathbf{v}} \cdot \underline{\mathbf{v}}}{ \underline{\mathbf{v}} }$
	6-	Which one is tr		(C) hydr - 0	(D) $\underline{\mathbf{k}} \times \underline{\mathbf{i}} = -\mathbf{j}$
		(A) $\underline{i} \times \underline{i} = \underline{i}$	(B) $\underline{i} \cdot \underline{i} = \underline{i}$	(C) $\underline{\mathbf{k}} \times \underline{\mathbf{k}} \neq 0$	(D) <u>E</u> ^[-]
	7-	_	ation represents a circle? (B) $3x^2 + 3y^2 = 9$	(C) $3x^2 + 5y^2 = 9$	(D) $x^2 - 2y = 0$
	8-	(A) $y^2 = 8x$	oint-slope form of a straight		(2)
	0-				(D) $\frac{x}{a} - \frac{y}{b} = 1$
		(A) y = mx + c		/ a U	a b
	9-	$dx^2 dx$			m) a
		(A) 1	(B) 0	(C) 2	(D) 3
	10-		which $f(x) = 4 - x^2$; $x \in (-2, -2)$, 2) is increasing	(D) (0, 1)
		(A)(0,2)	(B) (-2,0)	(C)(-2,2)	(D)(0,1)
	11-	1- The function $f(x) = \frac{x^2 - 1}{x^2 - 1}$ is not defined at			
		(A) x = 0	(B) x=1	(C) $x = 2$	(D) $x = -1$
	12-	2/			
	12-		1/	2	(D) $\frac{1}{2}$
		(A) 3	(B) ½	(C) $\frac{2}{3}$	$(D)\frac{1}{2}$
	13-	$\int \frac{f'(x)}{f(x)} dx = ?$,		
		$(A) \ln x + c$	$\int (B) \ln f(x) + c$	(C) $\ln f'(x) + c$	(D) $\ln f(x) \cdot f'(x) + c$
	14-		ne passing through the point	s(0,-1) and $(7,-15)$ is	(D) -2
		(A) 2	/ (B) 0	(C) 1	(D) 2
	15-	$\lim_{x\to-\infty}(e^x)=?$			(T) (A
		(A) ∞	/ (B) -∞	(C) 1	(D) 0
	16-	$[\underline{\mathbf{u}}\underline{\mathbf{v}}\underline{\mathbf{v}}]=?$	(D) 1	(C) 0	(D) <u>v</u>
	1.77	(A) 1	(B) -1	(C) 0	(2) ±
	17-	/	not solution of inequality x (B) $(0, -1)$	(C) (14, 0)	(D)(-4,0)
		(A)(1,1)	\mathbf{v}^2 \mathbf{v}^2		
	18-	Major axis of	ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with $(a >$	b) is	
		/	** 0	(C) $x = 1$	(D) $y = 1$

Derivative of Tan⁻¹x w.r.t. x is

(A) $\frac{1}{1-x^2}$ (B) $\frac{1}{x^2-1}$ (C) $\frac{1}{1+x^2}$ Distance of line 5x + 12y + 39 = 0 from origin is
(A) 3 (B) 5 (C) 12

19-

(D) 39 313-(IV)-1stA 424-25000

(D) $1+x^2$