Mathematics Time: 2:30 hours (INTER PART II)-419

PAPER: II

GROUP: I Marks: 80

SUBJECTIVE

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

i- Determine whether
$$f(x) = x\sqrt{x^2 + 5}$$
 is even or odd.

ii- For the real valued function
$$f(x) = \frac{2x+1}{x-1}$$
 find $f^{-1}(x)$ and $f^{-1}(-1)$

iii- If
$$f(x) = \begin{cases} x-1, & x < 3 \\ 2x+1, 3 \le x \end{cases}$$
 Find $\lim_{x \to 3} -f(x)$ and $\lim_{x \to 3} +f(x)$.

iv- Find the derivative of
$$f(x) = c$$
 by first principle.

v- Differentiate
$$y = \frac{a+x}{a-x}$$
 w.r.t, x

vi- Find
$$\frac{dy}{dx}$$
 if $y = e^{x^2 + 1}$

vii- Determine the values of x, for which
$$f(x) = x^2 + 2x - 3$$
 is extreme.

viii- Show that
$$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$

ix- If
$$y = \sin^{-1} \frac{x}{a}$$
 then $\frac{dy}{dx} = \frac{1}{\sqrt{a^2 - x^2}}$

xii- Find
$$\frac{dy}{dx}$$
 if $y = \tanh(x^2)$.

3. Write short answers to any EIGHT questions:

i- Use differentials, find
$$\frac{dy}{dx}$$
 if $x^2 + 2y^2 = 4$

iii- Evaluate
$$\int \frac{\sin \theta}{1 + \cos^2 \theta} d\theta$$

v- Evaluate
$$\int e^{x}(\cos x + \sin x) dx$$

vi- Evaluate
$$\int_{-1}^{2} (x + |x|) dx$$

vii- Find area between x-axis and curve
$$y = 4x - x^2$$

viii- Solve differential equation
$$xdy + y(x - 1) dx = 0$$

x- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

xii- Graph the feasible region of
$$3x - 2y \ge 6$$

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Show that points A(3, 1), B(-2, -3) and C(2, 2) are vertices of an isosceles triangle.
- ii- Define centroid of a triangle.
- iii- Find an equation of line through A(-6, 5) and having slope 7.
- iv- Convert into two intercept form 2x 4y + 11 = 0
 - v- Find centre and radius of circle $5x^2 + 5y^2 + 14x + 12y 10 = 0$
- vi- Determine whether the point P(-5,6) lies outside, on or inside the circle $x^2 + y^2 + 4x 6y 12 = 0$
- vii- Write an equation of parabola with focus (-1, 0), vertex (-1, 2)
- viii- Find an equation of ellipse with centre (0, 0), focus (0, -3) and vertex (0, 4)
- ix- Define direction angles.
- x- If O is origin and $\overline{OP} = \overline{AB}$, find the point P where A and B are (-3, 7) and (1, 0) respectively.
- xi- Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$
- xii- Find a and b so that the vectors $3\underline{i} \underline{j} + 4\underline{k}$ and $a\underline{i} + b\underline{j} 2\underline{k}$ are parallel.
- xiii- Find a scalar α so that the vector $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular.

SECTION II

5- (a) Prove that
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

- (b) Apply the Maclaurin series expansion to prove $\ln (1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$ 5
- 6- (a) Evaluate the integral $\int \frac{(a-b)x}{(x-a)(x-b)} dx$
 - (b) Find an equation of the perpendicular bisector of the line segment joining the points A(3, 5) and B(9, 8)
- 7- (a) Find the integral $\int_{0}^{\sqrt{7}} \frac{3x}{\sqrt{x^2+9}} dx$
 - (b) Graph the feasible region of the inequalities and find the corner points:

$$x+y \leq 5$$

$$-2x+y \geq 2$$

$$x \geq 0, y \geq 0$$

- 8- (a) Show that the lines 4x-3y-8=0; 3x-4y-6=0; x-y-2=0 are concurrent and third line bisect the angle formed by first two.
 - (b) Find equation of circle which passes through the points A(5, 10), B(6, 9) and C(-2, 3)
- 9- (a) Find the equation of 'Ellipse' with vertices (-1, 1); (5, 1) and foci (4, 1) and (0, 1) 5
 - (b) Using vectors, find the area of triangle ABC whose vertices are A(1, -1, 1); B(2, 1, -1) and C(-1, 1, 2)

5

5