SUBJECTIVE ...

Marks: 80

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Show that the parametric equations $x = at^2$, y = 2at represent the equation of parabola $y^2 = 4ax$

ii- Find
$$gof(x)$$
 if $f(x) = \frac{1}{\sqrt{x-1}}$, $x \ne 1$, $g(x) = (x^2 + 1)^2$

iii- Evaluate
$$\frac{Lim}{x \to 3} = \frac{x-3}{\sqrt{x} - \sqrt{3}}$$

iv- Evaluate
$$\frac{Lim}{x \to 0} \frac{1 - \cos x}{\sin^2 x}$$

- V- Find the derivative of \sqrt{x} at x = a from first principle.
- vi- Differentiate $\frac{2x-3}{2x+1}$ w. r. t. 'x'.

vii- Find
$$\frac{dy}{dx}$$
 if $y^2 + x^2 - 4x = 5$

- viii- Differentiate $\cos \sqrt{x} + \sqrt{\sin x}$ w. r. t. 'x'.
- ix- Find $\frac{dy}{dx}$ if $y = \log_{10}(ax^2 + bx + c)$

x- Find
$$\frac{dy}{dx}$$
 if $y = \frac{x}{\ell n x}$

xi- Find
$$y_2$$
 if $y = x^2 \cdot e^{-x}$

xii- Determine the interval in which
$$f(x) = \cos x$$
; $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, is increasing.

3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Using differentials find
$$\frac{dy}{dx}$$
 and $\frac{dx}{dy}$ for $xy + x = 4$

ii- Integrate
$$\frac{1}{\sqrt{x+a} + \sqrt{x}}$$
 w.r.t x

iv- Evaluate
$$\int \frac{ax}{\sqrt{a^2 - x^4}} dx$$

v- Solve
$$\int e^{ax} \left[a \sec^{-1} x + \frac{1}{x \sqrt{x^2 - 1}} \right] dx$$

vi- Evaluate
$$\int_{1}^{2} \frac{x}{x^2+2} dx$$

vii- Solve
$$\frac{x^2+1}{y+1} = \frac{x}{y} \frac{dy}{dx}$$

viii- Evaluate
$$\int_{0}^{\frac{\pi}{6}} x \cos x \, dx$$

- ix- Show that the points A(0,2), $B(\sqrt{3},-1)$ and C(0,2) are vertices of a right triangle.
 - x- Find the equation of line with slope: -5 and y-intercept is -7
 - xi- Show that the points (-1, -3), (1, 5) and (2,9) lie on the same straight line.

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Graph the solution set of linear inequality in xy-plane, $3x 2y \ge 6$
- ii- Find the equation of circle with centre $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$
- iii- Find the focus and vertex of the parabola $x^2 4x 8y + 4 = 0$
- iv- Write an equation of parabola with axis y = 0, through (2,1) and (11,2)
- v- Find the coordinate of vertices of a hyperbola $\frac{y^2}{16} \frac{x^2}{49} = 1$
- vi- Find the foci of the hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$
- vii- Find the sum of vectors \overrightarrow{AB} and \overrightarrow{CD} given four points A(1, -1), B(2,0), C(-1,3) and D(-2,2)
- viii- Find a unit vector in the direction of $\underline{\mathbf{v}} = \frac{1}{2}\underline{\mathbf{i}} + \frac{\sqrt{3}}{2}\underline{\mathbf{j}}$
 - ix- Let $\underline{\mathbf{v}} = 3\underline{\mathbf{i}} 2\underline{\mathbf{j}} + 2\underline{\mathbf{k}}$, $\underline{\mathbf{w}} = 5\underline{\mathbf{i}} \underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ find $\underline{\mathbf{v}} 3\underline{\mathbf{w}}$
 - x- Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$
 - xi- Find the direction cosines of \overrightarrow{PQ} where P = (2, 1, 5), Q = (1, 3, 1)
- xii- If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{j} = 0$, $\underline{v} \cdot \underline{k} = 0$, find \underline{v}
- xiii- Find the area of a parallelogram whose vertices are A(1, 2, -1), B(4, 2, -3), C(6, -5, 2), D(9, -5, 0)

SECTION II

- 5- (a) Evaluate limit by using algebraic techniques: $\frac{\text{Lim}}{x \to a} \frac{x^n a^n}{x^m a^m}$ 5
 - (b) Find $\frac{dy}{dx}$ of the given parametric functions: $x = \frac{a(1-t^2)}{1+t^2}$; $y = \frac{2bt}{1+t^2}$
- 6- (a) Show that $\int \sqrt{a^2 x^2} dx = \frac{a^2}{2} \sin^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{a^2 x^2} + c$ 5
 - (b) Find the area of the region bounded by the triangle whose sides are $7x y 10 = 0, \quad 10x + y 41 = 0, \quad 3x + 2y + 3 = 0$
- 7- (a) Solve the given differential equation: $\frac{1}{x} \frac{dy}{dx} = \frac{1}{2} (1 + y^2)$ 5
 - (b) Maximize f(x,y) = 2x + 5y subject to the constraints $2y x \le 8$, $x y \le 4$; $x \ge 0$, $y \ge 0$
- 8- (a) Find the centre and radius of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$
 - (b) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
- 9- (a) Show that $y = \frac{\ln x}{x}$ has maximum value at x = e
 - (b) Find the centre, foci and vertices of equation $9x^2 y^2 36x 6y + 18 = 0$