SUBJECTIVE

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

2. Write short answers to any EIGHT questions:

$$(2 \times 8 = 16)$$

i- Show that the parametric equations $x = a\cos\theta$, $y = b\sin\theta$ represent the equation of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

ii- Let the real valued functions 'f' and 'g' be defined by f(x) = 2x+1 and $g(x) = x^2-1$, obtain the expressions $f \circ g(x)$ and $f^2(x)$

iii- Evaluate the limit $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$

iv- Differentiate w.r.t.x $\frac{2x-1}{\sqrt{x^2+1}}$

v- Find $\frac{dy}{dx}$ if $x = at^2$ and y = 2 at

vi- Find $\frac{dy}{dx}$ if $4x^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

vii- If tany(1 + tanx) = 1 - tanx, show that $\frac{dy}{dx} = -1$

viii- Find y_2 if $y = \ln\left(\frac{2x+3}{3x+2}\right)$

ix- Determine the intervals in which f is increasing or decreasing for the domain mentioned. $f(x) = \sin x$; $x \in (-\pi, \pi)$

x- Find two positive integers whose sum is 30 and their product will be maximum.

xi- Define feasible region and feasible solution.

xii- Graph the feasible region of the following system of linear inequalities and find the corner points

$$x+y \le 5$$
$$-2x+y \ge 2$$
$$x \ge 0$$

3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Find δy if $y = x^2 - 1$ and x changes from 3 to 3.02

ii- Evaluate $\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$

iii- Find the anti-derivative of x²lnx

iv- Evaluate $\int \frac{e^{m \tan^{-1} x}}{1+x^2} dx$

v- Evaluate $\int_{\pi/6}^{\pi/3} \cos t \, dt$

vi- Find the area between x-axis and the curve $y = \sin 2x$ from x = 0 to $x = \frac{\pi}{3}$

vii- Solve the differential equation $\frac{dy}{dx} = \frac{1+y^2}{e^{-x}}$

viii- If $\underline{\mathbf{v}} = 3\underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 2\underline{\mathbf{k}}$ and $\underline{\mathbf{w}} = 5\underline{\mathbf{i}} - \underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ then find $|3\underline{\mathbf{v}} + \underline{\mathbf{w}}|$

Find direction cosines of vector \overrightarrow{PQ} where P(2,1,5) and Q(1,3,1)

Find a vector perpendicular to each of the vectors $\underline{\mathbf{u}} = 2\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$ and $\underline{\mathbf{v}} = 4\underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$

xi- Prove that
$$\underline{\mathbf{a}} \times (\underline{\mathbf{b}} + \underline{\mathbf{c}}) + \underline{\mathbf{b}} \times (\underline{\mathbf{c}} + \underline{\mathbf{a}}) + \underline{\mathbf{c}} \times (\underline{\mathbf{a}} + \underline{\mathbf{b}}) = 0$$

Calculate the projection of $\underline{a} = \underline{i} - \underline{k}$ along $\underline{b} = \underline{j} + \underline{k}$

Write short answers to any NINE questions: 4.

 $(2 \times 9 = 18)$

Find the point three-fifth of the way along the line segment from A(-5,8) to B(5,3)

By means of slopes show that the points (-4,6), (3,8) and (10,10) lie on the same line.

Find an equation of line with x-Intercept = -9 and slope is -4

Find measure of angle between the lines represented by $10x^2 - 23xy - 5y^2 = 0$

Find h such that the points A(-1, h), B(3,2) and C(7,3) are collinear.

Find an equation of the line through (11,-5) and parallel to a line with slope -24.

Find the co-ordinates of the point that divides the join of A(-6,3) and B(5,-2) externally in ratio 2:3

viii- Find centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$

Write down an equation of the parabola with focus (2,5) and directrix y = 1

Find an equation of circle of radius a and lying in 2nd Quadrant such that it is tangent to both the axes.

Find focus, vertex of the parabola $x^2 = 4(y-1)$

Find an equation of the hyperbola with given foci $(0,\pm 6)$, e=2

Find centre and foci of the hyperbola $\frac{y^2}{4} - x^2 = 1$

SECTION II

Note: Attempt any three (3) questions.

(a) Express the limit in terms of e $\lim_{x\to 0} \frac{e^{1/x}-1}{e^{1/x}-1}$, x>05 5-

(b) Find $\frac{dy}{dx}$ of the parametric equations $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$ 5

(a) Show that $\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) + \frac{x}{2} \sqrt{a^2 - x^2} + c$ 5

5 (b) Find an equation of the line through the point (2,-9) and intersection of the lines 2x+5y-8=0 and 3x-4y-6=0

(a) Evaluate $\int_{0}^{\pi/4} \cos^4 t \, dt$ 5

(b) Maximize f(x,y) = 2x + 5y subject to the constraints $2y - x \le 8$; $x - y \le 4$; $x \ge 0$; $y \ge 0$ 5

5 (a) If $y = (\cos^{-1}x)^2$, prove that $(1-x^2)y_2 - xy_1 - 2 = 0$ 8-

5 (b) Write down an equation of the circle that passes through the given points A(-7,7), B(5,-1), C(10,0)

(a) Find centre, foci, eccentricity, vertices and directrices of $x^2 + 16x + 4y^2 - 16y + 76 = 0$ 5

5 $\triangle ABC$; a = bCosC+cCosB (b) Prove that in any