GROUP: II PAPER: II Marks: 80

SUBJECTIVE

10 6 2 47 E 8 1 C

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Prove that
$$\operatorname{sech}^2 x = 1 - \operatorname{Tanh}^2 x$$

ii- Evaluate
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x} - \sqrt{3}}$$

iii- Find
$$\lim_{x\to\pi} \frac{\sin x}{\pi - x}$$

iv- If
$$y = x^4 + 2x^2 + 2$$
, prove that $\frac{dy}{dx} = 4 \times \sqrt{y-1}$

vi- If
$$y = \cot^{-1}\left(\frac{x}{a}\right)$$
, find $\frac{dy}{dx}$

vii- If
$$f(x) = \ln(e^x + e^{-x})$$
, find $f'(x)$

viii- If
$$y = Tanh^{-1}(Sinx)$$
, find $\frac{dy}{dx}$

ix- If
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
, find y_2

x- Find the interval in which
$$f(x)$$
 is increasing, $f(x) = 4 - x^2$, $x \in (-2,2)$

xii- Graph the solution set of linear inequality in xy-plane,
$$3x+7y \ge 21$$

3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Using differentials find
$$\frac{dy}{dx}$$
, if $xy+x=4$

ii- Evaluate
$$\int (2x+3)^{1/2} dx$$

iii- Evaluate
$$\int \frac{\operatorname{Sec}^2 x}{\sqrt{\tan x}} dx$$

iv- Evaluate
$$\int e^{-x} (\cos x - \sin x) dx$$

v- Evaluate
$$\int_{-1}^{2} (x + |x|) dx$$

vi- Find the area bounded by Cos function from
$$x = -\frac{\pi}{2}$$
 to $x = \frac{\pi}{2}$

vii- Solve
$$\frac{dy}{dx} = \frac{y}{x^2}$$

viii- If O is the origin and
$$\overrightarrow{OP} = \overrightarrow{AB}$$
, find the point P when A and B are (-3,7) and (1,0) respectively.

ix- Find a unit vector in the direction of
$$\underline{\mathbf{v}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$$

x- Find
$$\alpha$$
 so that $\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$ are perpendicular $\underline{\mathbf{u}} = 2\alpha \underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}$ and $\underline{\mathbf{v}} = \underline{\mathbf{i}} + \alpha \underline{\mathbf{j}} + 4\underline{\mathbf{k}}$

xi- Find a unit vector perpendicular to the plane containing
$$\underline{a}$$
 and \underline{b} , where $\underline{a} = 2\underline{i} - 6\underline{j} - 3\underline{k}$, $\underline{b} = 4\underline{i} + 3\underline{j} - \underline{k}$

xii- Given a force
$$\vec{F} = 2i + j - 3k$$
 acting at a point A(1,-2,1). Find the moment of \vec{F} about the point B(2,0,-2) (Turn over)

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

5

- i- Show that the points A(0,2), B($\sqrt{3}$,-1) and C(0,-2) are vertices of a right triangle.
- ii- The two points P(3,2) and O'(1,3) are given in XY-coordinate system. Find the XY-coordinates of P referred to the translated axes O'X and O'Y
- iii- Find K so that the line joining A(7,3), B(K,-6) and the line joining C(-4,5), D(-6,4) are parallel.
- iv- Find an equation of the vertical line through (-5,3)
- v- Find the distance from the point P(6,-1) to the line 6x-4y+9=0
- vi- Find point of intersection of the lines x-2y+1=0 and 2x-y+2=0
- vii- Find measure of the angle between the lines represented by $x^2 xy 6y^2 = 0$
- viii- Find an equation of the circle with centre at (5,-2) and radius 4
- ix- Check the position of the point (5,6) with respect to the circle $x^2 + y^2 = 81$
- x- Find the focus and vertex of parabola $x^2 = -16y$
- xi- Find equation of ellipse with foci (±3,0) and minor axis of length 10
- xii- Find the centre and foci of $x^2 y^2 = 9$
- xiii- Find the point of intersection of the given conics $x^2 + y^2 = 8$ and $x^2 y^2 = 1$

SECTION II

Note: Attempt any three (3) questions.

5- (a) If
$$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} &, & x \neq 2 \\ k &, & x = 2 \end{cases}$$

Find value of k so that f is continuous at x = 2

- (b) Differentiate Cosx² from the first principle.
- 6- (a) Evaluate $\int e^{2x} \cos 3x \, dx$
 - (b) Find the area of the region bounded by the triangle with vertices (a, b+c), (a, b-c) and (-a, c)
- 7- (a) Solve the differential equation $y x \frac{dy}{dx} = 2\left(y^2 + \frac{dy}{dx}\right)$ 5
 - (b) Minimize z = 2x + y subject to constraints $x + y \ge 3$, $7x + 5y \le 35$, $x \ge 0$, $y \ge 0$
- 8- (a) If $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ then, show that $y^2 = \frac{d^2y}{dx^2} + a = 0$
 - (b) Find an equation of the circle which passes through the points A(5,10), B(6,9) and C(-2,3) 5
- 9- (a) Find an equation of the ellipse with centre (0,0), major axis horizontal, the points (3,1),(4,0) lie on the graph.
 - (b) Find the volume of the tetrahedron whose vertices are A(2,1,8), B(3,2,9), C(2,1,4) and D(3,3,10) 5