Il No. of Candidate :			, s#		
IYSIC	S	(INTERMEDIATE PA	ART - I) 321 - (I) F	Paper- I Group-II	
ne: 20	Minutes	OBJECTIVE	- Code: 6472	Marks: 17	
te: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.					
1.	The dimensions of pressur (A) MLT ⁻²	are are (B) $ML^2 T^{-2}$	(C) ML ⁻¹ T ⁻²	(D) MLT -3	
2.	If $r = 2.25 \pm 0.01$ cm the (A) 0.225%	en (%) percentage uncertai (B) 22.5%	inty in r is (C) 0.2%	(D) 0.4%	
3.	If $\overline{A} = 4\hat{i} + 3\hat{j}$ then $\hat{A} =$	1			
	$(A) \frac{4\hat{i}+3\hat{j}}{7}$	$(B) \frac{4\hat{i}+3\hat{j}}{5}$	(C) $\frac{4\hat{i}+3\hat{j}}{12}$	(D) $\frac{4\hat{i}+3\hat{j}}{6}$	
4.	The SI unit for toque is A) Nm	(B) Nm ⁻¹	(C) mN ⁻¹	(D) N ⁻¹ m ⁻¹	
5.	If the water flows out from	m a pipe at 3 kg s ⁻¹ and its	s velocity changes from 5	ms ⁻¹ to zero	
	on striking the wall then a (A) 5N	(B) 8N	(C) 15N	(D) 1.66N	
6.	The fuel consumed by a t (A) 100 kg s ⁻¹	(B) 1000 kg s^{-1}	(C) 10000 kg s ⁻¹	(D) 100000 kg s	
7.	Kilowatt hour is a unit fo (A) energy	(B) power	(C) time	(D) momentum	
8.	One revolution =				
	(A) $\frac{\pi}{2}$ rad	(B) π rad	(C) 2π rad	(D) $4\pi \text{ rad}$	
9.	The moment of inertia of			1	
	(A) $\frac{1}{2}$ mr ²	$\frac{2}{5}$ mr ²	(C) $\frac{1}{5}$ mr ²	(D) $\frac{1}{12} \text{mr}^2$	
10.	Torricelli's theorem can	be written as	, A. T. C.		
V	(A) $V = \sqrt{2g(h_1 - h_2)}$	(B) $V = 2g(h_1 - h_2)$	(C) $V = 2g\sqrt{(h_1 - h_2)}$	(D) $V = \sqrt{2g} (h_1 - h_2)^{-1}$	
11.	The total distance travell equal to its period is	ed by an object with SHM	I, having amplitude A, in a	ı time	
	(A) $\frac{A}{4}$	(B) $\frac{A}{2}$	(C) 2A	(D) 4A	
12.	12. If the wavelength of a wave is 1500 m and moves with a velocity of 3 x 108 ms ⁻¹ ,				
	its frequency will be (A) 5 x 10 ⁻⁶ Hz		(C) $45 \times 10^{10} \text{ Hz}$	(D) $3.15 \times 10^6 \text{ Hz}$	
13.	Waves transport (A) energy	(B) wavelength	(C) power	(D) mass	
14.	Bragg equation is given	as			
\	(A) $2 \operatorname{d} \operatorname{Sin} \theta = n\lambda$	(B) $d \sin \theta = n\lambda$	(C) $2d = n\lambda$	(D) $2d = (n + \frac{1}{2})\lambda$	
15.	The least distance of dist		(0) 00	VO) 25	
2.5	(A) 10 cm	(B) 15 cm	(C) 20 cm	(D) 25 cm t efficient?	
16.	(A) carnot engine	(B) diesel engine		(D) steam engine	
17.	The value of universal g (A) 1.6 J mol ⁻¹ k ⁻¹	(B) 1.38 J mol ⁻¹ k ⁻¹	(C) 8.314 J mol ⁻¹ k ⁻¹	(D) 6.02 J mol ⁻¹ k ⁻¹	
				215-(I)-321-45000	