: 2:40 Hours

SUBJECTIVE

Marks: 68

e: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- A particle carrying a charge of 2e falls through a potential difference of 3.0 V. Calculate the energy acquired by it.
- ii. Define electron volt.
- iii. Define electric flux. Also write down its unit.
- iv. How can you identify that which plate of a capacitor is positively charged?
- v. Why does the picture on a T.V screen become distorted when a magnet is brought near the screen?
- vi. How can you use a magnetic field to separate isotopes of chemical element?
- vii. A plane conducting loop is located in a uniform magnetic field that is directed along the x-axis. For what orientation of the loop, is the flux a maximum? For what orientation is the flux a minimum?
- viii. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in the region is zero?
- ix. Does the induced emf in a circuit depend on the resistance of the circuit?

 Does the induced current depend on the resistance of the circuit?
- x. Does the induced emf always act to decrease the magnetic flux through a circuit?
- xi. Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have an induced emf in the loop?
- xii. Show that ε and $\frac{\Delta \phi}{\Delta t}$ have the same units?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100 W, 220 V bulb.
- ii. Describe a circuit which will give a continuously varying potential.
- iii. What are thermistors? Write down their applications.
- iv. How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- v. In a R-L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.
- vi. A 100 μ F capacitor is connected to an alternating voltage of 24 V and frequency 50 Hz. What will be the reactance of the capacitor?
- vii. Define stress and strain. What are their SI units?
- viii. What is meant by hysteresis loss? How is it used in the construction of transformer?
- ix. Define modulus of elasticity. Show that the units of modulus of elasticity and stress are the same.
- x. Why a photo diode is operated in reverse biased state?
- xi. Why is the base current in a transistor very small?
- xii. Define open loop gain and write down its relation.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Define pair production and write down its equation.
- ii. What happens to total radiation from a black body if the absolute temperature is doubled?
- iii. Which photon red, green or blue carries the most (a) Energy and (b) Momentum?
- iv. Write down two uses of Laser in Medicine.
- v. What do we mean when we say that the atom is excited?
- vi. What do we mean by the term critical mass?
- vii. Describe a brief account of interaction of various types of radiations with matter.
- viii. Define half-life of a radioactive element, write down its expression.
- ix. What is radioactivity?

(SECTION - II)

5. (a)	What is a wheatstone bridge? How is it used to determine an unknown resistance?			5
(b)	Compare magnitudes of electrical and gravitational forces exerted on an object			3
	(mass = 10.0 g, charge = 20.0 μ C) by an identical object that is placed 10.0 cm			
	from the first. $(G=6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2})$	*		
6. (a)	Discuss the principle, construction and working of an alternating current generator.		,	5
٠.	Also find expression for induced emf and current.			
(b)	Find the radius of an orbit of an electron moving at a rate of 2.0x10 ⁷ ms ⁻¹ in a uniform		*	3
	magnetic field 1.20×10^{-3} T.			
7. (a)	Explain R-L-C series resonance circuit. Draw its impedance diagram and also write down	4 .		5
* 2	its properties.			
(b)	In a certain circuit, the transistor has a collector current of 10 mA and base current of			3
	40 μA. What is the current gain of the transistor?			•
8. (a)	What are radiation detectors? Describe the principle, construction and working of			5
	Wilson Cloud Chamber for detecting nuclear radiation.			
(b)	The length of a steel wire is 1.0 m and its cross-sectional area is 0.03×10^{-4} m ² .	141		3
	Calculate the work done in stretching the wire when a force of 100 N is applied within	•		·
	the elastic region. Young's modulus for steel is 3.0x10 ¹¹ Nm ⁻² .			
	What is LASER? Describe its principle and operation.			5.
	An electron is placed in a box about the size of an atom that is about 1.0×10^{-10} m.			3
	What is the velocity of the electron?			5
*				

315-421-34000