Roll No		
CHEMISTRY 222-(INTER PART – I) Time Allowed: 20 Minutes Q.PAPER – I (Objective Type) GROUP – II Maximum Marks: 17		
PAPER CODE = 6484		
Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling		
1-1	wo or more circles will result in zero mark in that question. Which of the following will have the same number of molecules at S.T.P:	
1-1	(A) $280 \text{ cm}^3 \text{ of } \text{CO}_2 \text{ and } 280 \text{ cm}^3 \text{ of } \text{N}_2\text{O}$ (B) $11.2 \text{ dm}^3 \text{ of } \text{O}_2 \text{ and } 32 \text{ g of } \text{O}_2$	
	(C) 44 g of CO ₂ and 11.2 dm ³ of CO (D) 28 g of N ₂ and 5.6 dm ³ of oxygen	
2	Quantum number values for 2p orbitals are:	
	(A) $n = 2, \ell = 1$ (B) $n = 1, \ell = 2$ (C) $n = 1, \ell = 0$ (D) $n = 2, \ell = 0$	
3	For which system does the equilibrium constant, K_c has units of (concentration) ⁻¹ :	
	(A) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ (B) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	
	(C) $2NO_2(g) \rightleftharpoons N_2O_4(g)$ (D) $2HF(g) \rightleftharpoons H_2(g) + F_2(g)$	
4	The unit of the rate constant is the same as that of the rate of reaction in:	
	(A) First order reaction (B) Second order reaction	
	(C) Zero order reaction (D) Third order reaction	
5	Isotopes differ in:	
	(A) Properties which depend upon mass	
	(B) Arrangement of electrons in orbitals	
	(C) Chemical properties	
	(D) The extent to which they may be affected in electromagnetic field	
6	The bond angle in NH ₃ molecule is:	
	(A) 109.5° (B) 107.5° (C) 104.5° (D) 108°	
7	The comparative rates at which the solutes move in paper chromatography depends on :	
	(A) The size of the paper (B) R_f values of solutes	
	(C) Temperature of the experiment (D) Size of the chromatographic tank used	
8	The number of bonds in nitrogen molecule is:	
	(A) One σ and one π (B) One σ and two π	
	(C) Three sigma only (D) Two σ and one π	
9	If a strip of Cu metal is placed in a solution of FeSO ₄ :	
	(A) Cu will be deposited (B) Fe is precipitated out	
	(C) Cu and Fe both dissolve (D) No reaction takes place	
10	London dispersion forces are the only forces present among the:	
	(A) Molecules of water in liquid state	
	(B) Atoms of helium in gaseous state at high temperature	
	(C) Molecules of solid iodine	
	(D) Molecules of hydrogen chloride gas	
	(Turn Over)	

	(2)
11	The mass of one mole of electron is:
	(A) 1.008 mg (B) 0.55 mg (C) 0.184 mg (D) 1.673 mg
12	Diamond is a bad conductor because:
	(A) It has a tight structure
	(B) It has a high density
	(C) There are no free electron present in the crystal of diamond to conduct electricity
	(D) Is transparent to light
13	How should the conditions be changed to prevent the volume of a given gas from expanding
	when its mass is increased:
	(A) Temperature is lowered and pressure is increased
	(B) Temperature is increased and pressure is lowered
	(C) Temperature and pressure both are lowered
	(D) Temperature and pressure both are increased
14	Bohr's model of atom is contradicted by:
	(A) Plank's quantum theory (B) Dual nature of matter
	(C) Heisenberg's uncertainty principle (D) All of these
15	Chromatography in which the stationary phase is a solid classified as:
	(A) Partition chromatography (B) Gas chromatography
	(C) Adsorption chromatography (D) Thin layer chromatography
16	The net heat change in a chemical reaction is same, whether it is brought about in two or more
10	different ways in one or several steps. It is known as:
	(A) Henry's law (B) Joule's principle
17	(C) Hess's law (D) Law of conservation of energy Molarity of pure water is:
1/	
	(A) 1 (B) 18 (C) 55.5 (D) 6
	132-222-II-(Objective Type) - 10250 (6484)