

PAPER CODE = 6195

Note : Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1	If $x - a$ is a factor of polynomial $f(x)$, then $f(a)$ is :			
	(A) = 0	(B) < 0	(C) > 0	(D) $\neq 0$
2	If ${}^nC_5 = {}^nC_4$, then n is :			
	(A) 9	(B) 7	(C) 6	(D) 5
3	The multiplicative inverse of $(1, -2)$ is :			
	(A) $(\frac{1}{5}, \frac{-2}{5})$	(B) $(\frac{-1}{5}, \frac{-2}{5})$	(C) $(\frac{1}{5}, \frac{2}{5})$	(D) $(\frac{-1}{5}, \frac{2}{5})$
4	9th term in the sequence $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$ is :			
	(A) $\frac{1}{13}$	(B) $\frac{1}{15}$	(C) $\frac{1}{17}$	(D) $\frac{1}{19}$
5	The contrapositive of $\sim p \rightarrow \sim q$ is :			
	(A) $p \rightarrow q$	(B) $q \rightarrow p$	(C) $\sim q \rightarrow \sim p$	(D) $\sim q \rightarrow p$
6	From the identity $5x + 4 = A(x-1) + B(x+2)$, then value of B is :			
	(A) -3	(B) 3	(C) -2	(D) 2
7	The sum of four 4 th roots of 16 is :			
	(A) 0	(B) 2	(C) 4	(D) 16
8	If $\begin{bmatrix} x-3 & 1 \\ -5 & -4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -5 & -4 \end{bmatrix}$, then x is :			
	(A) 5	(B) -5	(C) -1	(D) 1
9	The arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is :			
	(A) $3\sqrt{2}$	(B) $2\sqrt{2}$	(C) $4\sqrt{2}$	(D) $\sqrt{2}$
10	If $A = \begin{bmatrix} 1 & 2 & -2 \\ 0 & 0 & 5 \\ 6 & 7 & 3 \end{bmatrix}$, then $A_{33} =$:			
	(A) -1	(B) 1	(C) 3	(D) 0
11	Period of $\cot \theta$ is :			
	(A) π	(B) 2π	(C) $\frac{\pi}{2}$	(D) $\frac{3\pi}{2}$

1-12	Number of signals can be made with 4 flags when one flag is used at a time are :			
	(A) 4C_0	(B) 4C_1	(C) 4C_2	(D) 4C_3
13	The equation $\sin^2 x - \sec x = \frac{3}{4}$ is called :			
	(A) Trigonometric equation	(B) Linear equation		
	(C) Quadratic equation	(D) Quartic equation		
14	$3\sin \alpha - 4\sin^3 \alpha = :$			
	(A) $\sin \alpha$	(B) $\sin 2\alpha$	(C) $\sin 3\alpha$	(D) $\sin 4\alpha$
15	Domain of the function $y = \sin^{-1} x$ is :			
	(A) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$	(B) $-1 \leq y \leq 1$	(C) $-1 \leq x \leq 1$	(D) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
16	Francesco Moullico devised the method of :			
	(A) Partial fraction	(B) Induction	(C) Logarithms	(D) Binomial
17	If $\ell = 35$ cm and $\theta = 1$ rad, then $r = :$			
	(A) 35°	(B) 35 cm	(C) 35 rad	(D) 35 m
18	In any ΔABC with usual notations, $\frac{\Delta}{s-c} = :$			
	(A) r	(B) r_1	(C) r_2	(D) r_3
19	The general term in the expansion of $(a+x)^n$ is :			
	(A) $\binom{n}{a} a^{n-r} x^r$	(B) $\binom{n}{x} a^{n-r} x^r$	(C) $\binom{n}{r} a^{n-r} x^r$	(D) $\binom{n}{r} a^{n-r} x$
20	If sides of a ΔABC are $a = 4584$, $b = 5140$ and $c = 3624$, then greatest angle will be :			
	(A) α	(B) β	(C) γ	(D) a