

SECTION – I

2. Write short answers to any EIGHT (8) questions :

16

- (i) If z_1 and z_2 are complex numbers then show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- (ii) Find out real and imaginary parts of $(\sqrt{3} + i)^3$
- (iii) Factorize $a^2 + 4b^2$
- (iv) Define power set of a set and give an example.
- (v) Define a bijective function.
- (vi) Construct truth table and show that the statement $\sim (p \rightarrow q) \rightarrow p$ is a tautology or not.
- (vii) Find the matrix X if $X \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$
- (viii) For the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ find cofactor A_{12}
- (ix) Without expansion show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- (x) When $x^4 + 2x^3 + kx^2 + 3$ is divided by $(x - 2)$, the remainder is 1. Find the value of k .
- (xi) If α, β are the roots of $ax^2 + bx + c = 0$, $a \neq 0$ then find the value of $\alpha^2 + \beta^2$
- (xii) The sum of a positive number and its square is 380. Find the number.

3. Write short answers to any EIGHT (8) questions :

16

- (i) Define partial fraction.
- (ii) In the identity $7x + 25 = A(x + 4) + B(x + 3)$, calculate values of A and B .
- (iii) Resolve $\frac{1}{x^2 - 1}$ into partial fractions.
- (iv) Write the first four terms of the sequence, if $a_n - a_{n-1} = n + 2$, $a_1 = 2$
- (v) Which term of the arithmetic sequence $5, 2, -1, \dots$ is -85 .
- (vi) Find three A.Ms between 3 and 11.
- (vii) If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are in G.P, show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (viii) Insert two G.Ms between 2 and 16.
- (ix) Find the value of n when ${}^n C_{10} = \frac{12 \times 11}{2!}$
- (x) Show that $\frac{n^3 + 2n}{3}$ represents an integer for $n = 2, 3$.
- (xi) Expand $\left(1 - \frac{3}{2}x\right)^{-2}$ upto 4 terms.
- (xii) If x is so small that its square and higher power can be neglected, then show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$

4. Write short answers to any NINE (9) questions :

- (i) Find ℓ , if $\theta = 65^\circ 20'$, $r = 18$ mm
- (ii) Prove $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1:2:3:4$
- (iii) Prove $\cos^2 \theta - \sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$
- (iv) Prove that $\tan 56^\circ = \frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ}$
- (v) Prove $\frac{1 - \cos \alpha}{\sin \alpha} = \tan \frac{\alpha}{2}$
- (vi) Prove $\cos 20^\circ + \cos 100^\circ + \cos 140^\circ = 0$
- (vii) Find the period of $\tan \frac{x}{7}$
- (viii) In ΔABC , $\beta = 60^\circ$, $\gamma = 15^\circ$, $b = \sqrt{6}$, find c .
- (ix) If $a = 200$, $b = 120$, $\gamma = 150^\circ$, find the area of a triangle ABC
- (x) Prove that $r_1 r_2 r_3 = rs^2$
- (xi) Prove $\sin(2\cos^{-1} x) = 2x\sqrt{1-x^2}$
- (xii) Solve $1 + \cos x = 0$
- (xiii) Find the solutions of $\sin x = -\frac{\sqrt{3}}{2}$ in $[0, 2\pi]$

SECTION - II

Note : Attempt any THREE questions.

5. (a) Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication. 5
- (b) Find three, consecutive numbers in G.P whose sum is 26 and their product is 216. 5
6. (a) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ by using row operation. 5
- (b) Prove that ${}^n C_r + {}^n C_{r-1} = {}^{n+1} C_r$ 5
7. (a) Solve the system of equations :
 $12x^2 - 25xy + 12y^2 = 0$
 $4x^2 + 7y^2 = 148$ 5
- (b) If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 + \dots$ then prove that $y^2 + 2y - 2 = 0$ 5
8. (a) Prove that $\sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} = \sec \theta - \tan \theta$ where θ is not an odd multiple of $\frac{\pi}{2}$ 5
- (b) If α, β, γ are the angles of a triangle ABC, then show that :
 $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ 5
9. (a) The sides of a triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$. Prove that the greatest angle of the triangle is 120° . 5
- (b) Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} - \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$ 5