

SECTION – I

2. Write short answers to any EIGHT (8) questions :

16

- (i) Write the symmetric property and transitive property of equality of the real numbers.
- (ii) Show that $z\bar{z} = |z|^2 \forall z \in C$
- (iii) Find out real and imaginary parts of $(\sqrt{3} + i)^3$
- (iv) Find the modulus of $1 - i\sqrt{3}$
- (v) Construct truth table for $(p \wedge \sim p) \rightarrow q$
- (vi) If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b .
- (viii) If A and B are square matrices of the same order, then explain why in general $(A - B)^2 \neq A^2 - 2AB + B^2$.
- (ix) Define skew-hermitian matrix.
- (x) Evaluate $\omega^{28} + \omega^{29} + 1$
- (xi) When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of k .
- (xii) If α, β are the roots of $x^2 - px - p - c = 0$, prove that $(1 + \alpha)(1 + \beta) = 1 - c$

3. Write short answers to any EIGHT (8) questions :

16

- (i) Define partial fractions.
- (ii) If $\frac{7x+25}{(x+3)(x+4)} = \frac{4}{x+3} + \frac{B}{x+4}$, then find B.
- (iii) Find the number of terms in A.P if $a_1 = 3$; $d = 7$ and $a_n = 59$
- (iv) If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P., show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) Find the sum of $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots - \infty$
- (vi) If 5 is H.M. between 2 and b, then find b.
- (vii) Write $\frac{(n+1)(n)(n-1)}{3.2.1}$ in factorial form.
- (viii) Prove that ${}^n P_r = n \cdot {}^{n-1} P_{r-1}$
- (ix) Determine probability of getting 2 heads in two successive tosses of balanced coin.
- (x) Show that $8.10^n - 2$ is divisible by 6 for $n = 1$ and $n = 2$
- (xi) Find the 6th term in the expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$
- (xii) Using binomial theorem, find value of $\sqrt[3]{65}$ correct to three places of decimal.

4. Write short answers to any NINE (9) questions :

(i) Verify $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ for $\theta = 45^\circ$

(ii) Prove the identity $\frac{1 + \cos \theta}{1 - \cos \theta} = (\csc \theta + \cot \theta)^2$

(iii) If α, β and γ are the angles of triangle ABC then prove that $\tan(\alpha + \beta) - \tan \gamma = 0$

(iv) Express as product $\cos 6\theta + \cos 3\theta$

(v) Prove that $1 + \tan \alpha \tan 2\alpha = \sec 2\alpha$

(vi) Prove that period of cosine is 2π

(vii) Find the period of $\csc 10x$

(viii) Draw the graph of the function $y = \cos x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

(ix) Write formula for $\cos \frac{\alpha}{2}$ and $\cos \frac{\gamma}{2}$

(x) Measure of two sides of a triangle are in the ratio $3 : 2$ and angle including these sides is 57° . Find the remaining two angles.

(xi) Define circum centre.

(xii) Without using calculator / table, show that $2 \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{24}{25}$

(xiii) Solve the trigonometric equation $\csc^2 \theta = \frac{4}{3}$

SECTION - II

Note : Attempt any THREE questions.

5. (a) Show that $\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2(a+b+c+\lambda)$ 5

(b) If the roots of the equation $x^2 - px + q = 0$ differ by unity, prove that $p^2 = 4q + 1$ 5

6. (a) Resolve $\frac{1}{(x-3)^2(x+1)}$ into partial fractions 5

(b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b 5

7. (a) Two dice are thrown. E_1 is the event that the sum of their dots is an odd numbers and E_2 is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$ 5

(b) If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 + \dots$ prove that $y^2 + 2y - 2 = 0$ 5

8. (a) Reduce $\sin^4 \theta$ to an expression involving only function of multiple of θ , raised to the first power. 5

(b) Prove that $\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ 5

9. (a) Find the values of all the trigonometric functions of the angle -675° . 5

(b) Prove that $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{25} = \cos^{-1} \frac{253}{325}$ 5