

Sl No \_\_\_\_\_ ( To be filled in by the candidate)

( Academic Sessions 2020 – 2022 to 2023 – 2025 )

MATHEMATICS 224-1<sup>st</sup> Annual-(INTER PART – I) Time Allowed : 2.30 hours  
PAPER – I ( Essay Type ) GROUP – II Maximum Marks : 80

**SECTION – I**

**2. Write short answers to any EIGHT (8) questions :**

16

(i) Show that  $z^2 \bar{z}^2$  is a real number.

(ii) Find the modulus of  $1 - i\sqrt{3}$

(iii) Simplify by justifying each step 
$$\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}$$

(iv) Check the closure property w.r.t. addition and multiplication for the set  $\{0, -1\}$

(v) Determine whether the statement  $p \wedge \sim p$  is tautology or not.

(vi) Define semi-group.

(vii) If  $A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$ , find  $A(\bar{A})^t$

(viii) Define reduced echelon form of a matrix, with example.

(ix) If  $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$ , verify that  $(A^{-1})^t = (A^t)^{-1}$

(x) Discuss nature of roots of  $9x^2 - 12x + 4 = 0$

(xi) Solve the equations  $x^2 + y^2 = 25$ ,  $2x^2 + 3y^2 = 6$

(xii) Find the condition that one root of  $x^2 + px + q = 0$  is square of other.

**3. Write short answers to any EIGHT (8) questions :**

16

(i) Define proper rational fraction.

(ii) For the identity  $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{A}{x-1} + \frac{B}{2x-1} + \frac{C}{3x-1}$  calculate the value of A.

(iii) Find the next two terms of 1, 3, 7, 15, 31, ----

(iv) How many terms are there in the A.P. in which  $a_1 = 11$ ,  $a_n = 68$ ,  $d = 3$

(v) Find three A.Ms between  $\sqrt{2}$  and  $3\sqrt{2}$ .

(vi) Find the 12<sup>th</sup> term of 1+i, 2i, -2+2i, -----

(vii) Show that  ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$

(viii) Evaluate  ${}^{12}C_3$

(ix) What is sample space and events?

(x) State principle of mathematical induction.

(xi) Calculate  $(9.98)^4$  by means of binomial theorem.

(xii) Prove that  $n! > 2^n - 1$  for  $n = 4, 5$

**4. Write short answers to any NINE (9) questions :**

18

(i) What is length of an arc intercepted on a circle of radius 14 cm by the arms of a central angle  $45^\circ$ ?

(ii) Convert  $54^\circ 45'$  into radians.

4. (iii) If  $\alpha, \beta, \gamma$  are angles of triangle ABC then prove that  $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$

(iv) Find the value of  $\cos\frac{\pi}{12}$

(v) Express  $\sin(x+30^\circ) + \sin(x-30^\circ)$  as a product.

(vi) Define periodic function and period of trigonometric function.

(vii) Find period of  $\cos\frac{x}{6}$

(viii) Draw the graph of  $y = \sin x$  from 0 to  $\pi$ .

(ix) State law of sines.

(x) If sides of triangle are 16, 20, 23, find its greatest angle.

(xi) Show that  $r_1 = s \tan\frac{\alpha}{2}$

(xii) Find value of  $\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)$

(xiii) Show that  $\tan\left(\sin^{-1}x\right) = \frac{x}{\sqrt{1-x^2}}$

## SECTION - II

**Note : Attempt any THREE questions.**

5. (a) Solve the system of equations by Cramer's rule :

5

$$2x + 2y + z = 3$$

$$3x - 2y - 2z = 1$$

$$5x + y - 3z = 2$$

(b) If  $\alpha, \beta$  roots of  $x^2 - 3x + 5 = 0$  form the equation whose roots are  $\frac{1-\alpha}{1+\alpha}$  and  $\frac{1-\beta}{1+\beta}$

5

6. (a) Resolve  $\frac{x^4}{1-x^4}$  into partial fractions

5

(b) The sum of an infinite geo-metric series is 9 and the sum of the squares of its terms is  $\frac{81}{5}$ . Find the series.

5

7. (a) Find the values of n and r when  ${}^{n-1}C_{r-1} : {}^nC_r : {}^{n+1}C_{r+1} = 3:6:11$

5

(b) If x is so small that its cube and higher powers can be neglected,

then show that :  $\sqrt{\frac{1-x}{1+x}} \approx 1-x+\frac{x^2}{2}$

5

8. (a) Reduce  $\cos^4 \theta$  to an expression involving only function of multiples of  $\theta$ , raised to the first power.

5

(b) Prove that  $r_3 = 4R \cos\frac{\alpha}{2} \cos\frac{\beta}{2} \sin\frac{\gamma}{2}$

5

9. (a) Show that the area of a sector of a circular region of radius r is  $\frac{1}{2}r^2\theta$ , where  $\theta$  is the circular measure of the central angle of the sector.

5

(b) Prove that  $\sin^{-1}\frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$

5