

**SECTION – I****2. Write short answers to any EIGHT (8) questions :**

16

(i) Express perimeter “ P ” of a square as a function of its area “ A ”

(ii) Find  $f^{-1}(x)$  for  $f(x) = -2x + 8$

(iii) Evaluate  $\lim_{x \rightarrow 0} \frac{\sin x^\circ}{x}$

(iv) Define rational function with example.

(v) Evaluate  $\lim_{x \rightarrow \infty} \left( \frac{x}{1+x} \right)^x$

(vi) Find  $\frac{dy}{dx}$  from first principle if  $y = \sqrt{x+2}$

(vii) Differentiate w.r.t. “ x ”;  $y = \frac{x^2+1}{x^2-3}$

(viii) Find  $\frac{dy}{dx}$  if  $xy + y^2 = 2$

(ix) Find derivative w.r.t. x if  $y = \cot^{-1} \left( \frac{x}{a} \right)$

(x) Find  $\frac{dy}{dx}$  if  $y = \log_{10}(ax^2 + bx + c)$

(xi) Apply the Maclaurin Series to prove that  $e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \dots$

(xii) Define increasing function with example.

**3. Write short answers to any EIGHT (8) questions :**

(i) Find  $\delta y$  and  $dy$  in  $y = \sqrt{x}$ , when  $x$  changes from 4 to 4.41

(ii) Evaluate the integral  $\int \frac{(\sqrt{\theta} - 1)^2}{\sqrt{\theta}} d\theta$ ,  $\theta > 0$

(iii) Find  $\int \frac{1}{x(\ln x)} dx$

(iv) Evaluate the integral  $\int \frac{x+2}{\sqrt{x+3}} dx$

(v) Using by part method to evaluate  $\int x^2 \ln x dx$

(vi) Evaluate the definite integral  $\int_0^{\frac{\pi}{3}} \cos^2 \theta \sin \theta d\theta$

(vii) Find the area between the x-axis and the curve  $y = \cos \frac{1}{2}x$  from  $x = -\pi$  to  $\pi$

(viii) Solve the differential equation  $\sin y \cosec x \frac{dy}{dx} = 1$

(ix) Find  $h$  such that A (-1,  $h$ ), B (3, 2), C (7, 3) are collinear.

3. (x) Two points  $P(-5, -3)$  and  $O'(-2, -6)$  are given in XY-coordinate, find the coordinate of P in  $xy$ -coordinate system.  
 (xi) Find equation of the line having x-intercept -3 and y-intercept 4.  
 (xii) Find the distance from the point  $P(6, -1)$  to the line  $6x - 4y + 9 = 0$

4. Write short answers to any NINE (9) questions :

18

- (i) Define problem constraint.
- (ii) Graph the solution set of the linear inequality  $3y - 4 \leq 0$
- (iii) Find slope of tangent to  $x^2 + y^2 = 5$  at  $(4, 3)$
- (iv) Find  $\alpha$  if  $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$  and  $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$  are perpendicular to each other.
- (v) Find the direction cosine of the vector  $\overrightarrow{PQ}$ , where  $P(2, 1, 5)$  and  $Q(1, 3, 1)$
- (vi) Find the vector from point A to origin where  $\overrightarrow{AB} = 4\underline{i} - 2\underline{j}$  and B is the point  $(-2, 5)$
- (vii) Find cosine of the angle between  $\underline{u} = [-3, 5]$  and  $\underline{v} = [6, -2]$
- (viii) Write standard equation of the hyperbola.
- (ix) Find the centre of the ellipse  $9x^2 + y^2 = 18$
- (x) Find the equation of the circle with centre  $(5, -2)$  and radius is 4.
- (xi) Find the equation of the hyperbola with foci  $(\pm 5, 0)$  and vertex  $(3, 0)$
- (xii) Find centre and radius of the circle  $4x^2 + 4y^2 - 8x + 12y - 25 = 0$
- (xiii) Find focus and vertex of the parabola  $x^2 = 5y$

**SECTION – II**

**Note : Attempt any THREE questions.**

5. (a) Prove that  $\lim_{x \rightarrow 0} \frac{a^x - 1}{x} = \log_e a$  5  
 (b) If  $x = \frac{1-t^2}{1+t^2}$ ,  $y = \frac{2t}{1+t^2}$  prove that  $y \frac{dy}{dx} + x = 0$  5

6. (a) Evaluate  $\int \ln(x + \sqrt{x^2 + 1}) dx$  5  
 (b) Prove that the linear equation  $ax + by + c = 0$  in two variables  $x$  and  $y$  represents a straight line. 5

7. (a) Find the area between the x-axis and the curve  $y = \sqrt{2ax - x^2}$  when  $a > 0$  5  
 (b) Graph the solution region of the system of linear inequalities and find the corner points of  $2x - 3y \leq 6$ ,  $2x + 3y \leq 12$ ,  $x \geq 0$  5

8. (a) Find a joint equation of the lines through the origin and perpendicular to the lines represented by  $x^2 - 2xy \tan \alpha - y^2 = 0$  5  
 (b) Find equations of the tangent lines to the circle  $x^2 + y^2 + 4x + 2y = 0$  drawn from  $P(-1, 2)$  5

9. (a) Find the centre, foci, eccentricity, vertices and equations of directrices of  $\frac{y^2}{16} - \frac{x^2}{9} = 1$  5  
 (b) Prove that  $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$  5