

SECTION – I**2. Write short answers to any EIGHT (8) questions :**

16

- (i) Prove that $\cos h^2 x - \sin h^2 x = 1$
- (ii) If $f(x) = \sqrt{x+4}$ then find $f(x-1)$
- (iii) Evaluate $\lim_{x \rightarrow 3} \frac{x-3}{\sqrt{x} - \sqrt{3}}$
- (iv) Evaluate $\lim_{x \rightarrow 0} \frac{1 - \cos 2x}{x^2}$
- (v) Differentiate $y = (x^2 + 5)(x^3 + 7)$ with respect to x .
- (vi) Differentiate $\frac{x^2 + 1}{x^2 - 3}$ with respect to x .
- (vii) Find derivative of $(x^3 + 1)^9$ with respect to x .
- (viii) Differentiate $\cos \sqrt{x} + \sqrt{\sin x}$ with respect to the variable involved.
- (ix) $\frac{dy}{dx} = ?$ If $y = e^{x^2 + 1}$
- (x) Find Maclaurin Series for $\sin x$
- (xi) Determine the interval in which $f(x) = 4 - x^2$, $x \in (-2, 2)$ is increasing or decreasing.
- (xii) Find $f'(x)$ if $f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$

3. Write short answers to any EIGHT (8) questions :

16

- (i) Using differential to find $\frac{dy}{dx}$ if $xy + x = 4$
- (ii) Evaluate $\int (a - 2x)^{\frac{3}{2}} dx$
- (iii) Evaluate $\int \sec x dx$
- (iv) Evaluate $\int x \ln x dx$
- (v) Evaluate $\int_1^2 \frac{x}{x^2 + 2} dx$
- (vi) Find the area bounded by cos function from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$
- (vii) Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$
- (viii) Find h such that A (-1, h), B (3, 2) and C (7, 3) are collinear.
- (ix) The coordinates of a point P are (3, 2). The axes are translated through the point $O'(1, 3)$. Find the coordinates of P referred to new axes.
- (x) Find k so that the line joining A (7, 3); B (k , -6) and the line joining C (-4, 5); D (-6, 4) are parallel.
- (xi) Find the point of intersection of the lines $x - 2y + 1 = 0$ and $2x - y + 2 = 0$
- (xii) Find measure of the angle between the lines represented by $9x^2 + 24xy + 16y^2 = 0$

4. Write short answers to any NINE (9) questions :

- (i) Graph the solution set of inequality $3x - 2y \geq 6$
- (ii) Define feasible region.
- (iii) Find the equation of circle whose ends of diameter are $(-3, 2)$ and $(5, -6)$
- (iv) Find the position of the point $(5, 6)$ w.r.t the circle $2x^2 + 2y^2 + 12x - 8y + 1 = 0$
- (v) Find the focus and vertex of parabola $y^2 = -8(x - 3)$
- (vi) Find the eccentricity of ellipse $x^2 + 4y^2 = 16$
- (vii) Find the centre and eccentricity of the conic $\frac{y^2}{4} - x^2 = 1$
- (viii) Identify the conic represented by $4x^2 - 4xy + y^2 - 6 = 0$
- (ix) Find the work done by a constant force $\vec{F} = 2\hat{i} + 4\hat{j}$, if its point of application to a body moves it from A $(1, 1)$ to B $(4, 6)$
- (x) Find the value of ' α ' such that $\alpha\hat{i} + \hat{j}$, $\hat{i} + \hat{j} + 3\hat{k}$ and $2\hat{i} + \hat{j} - 2\hat{k}$ are coplanar.
- (xi) If $\vec{u} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{v} = 4\hat{i} + 2\hat{j} - \hat{k}$ find $\vec{u} \times \vec{v}$
- (xii) Find a vector whose magnitude is 4 and is parallel to $2\hat{i} - 3\hat{j} + 6\hat{k}$
- (xiii) If A $(1, -1)$, B $(2, 0)$, C $(-1, 3)$ and D $(-2, 2)$ are given points, find the sum of the vectors \vec{AB} and \vec{CD}

SECTION - II

Note : Attempt any THREE questions.

5. (a) Find m and n, so that given function f is continuous at $x = 3$

$$f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases} \quad 5$$

(b) Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ 5

6. (a) If $y = e^{-ax}$, then show that $\frac{d^3y}{dx^3} + a^3y = 0$ 5

(b) Evaluate the indefinite integral $\int \sqrt{x^2 - a^2} dx$ 5

7. (a) Solve the differential equation $2e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$ 5

(b) Maximize $f(x, y) = x + 3y$ subject to the constraints $2x + 5y \leq 30$; $5x + 4y \leq 20$, $x \geq 0$, $y \geq 0$ 5

8. (a) Find equations of the tangents to the circle $x^2 + y^2 = 2$ perpendicular to the line $3x + 2y = 6$ 5

(b) Using vectors, prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ 5

9. (a) Find centre, foci, eccentricity, vertices and equation of directrices of $\frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1$ 5

(b) Find the equations of altitudes of the triangle whose vertices are A $(-3, 2)$, B $(5, 4)$, C $(3, -8)$ 5