

Roll No _____		(To be filled in by the candidate)			
MATHEMATICS Q.PAPER – II (Objective Type)		221-(INTER PART – II) GROUP – II			
		Time Allowed : 30 Minutes Maximum Marks : 20			
PAPER CODE = 8198					
<p>Note : Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.</p>					
1-1	The derivative of $\frac{1}{1+x}$ is :	(A) x	(B) $1+x$		
		(C) $(1+x)^{-2}$	(D) $-1(1+x)^{-2}$		
2	$\int \cos x dx = :$	(A) $1 - \sin^2 x$	(B) $\sqrt{1 - \sin^2 x}$		
		(C) $\sin x$	(D) $-\sin x$		
3	$\int_1^2 (x^2 + 1) dx = :$	(A) $\frac{10}{3}$	(B) $\frac{3}{10}$		
		(C) π	(D) $\frac{\pi}{2}$		
4	If $y = \cot^{-1} x$, then $\frac{dy}{dx} = :$	(A) $\frac{1}{1-x^2}$	(B) $\frac{-1}{1+x^2}$		
		(C) $\frac{1}{x^2-1}$	(D) $\frac{1}{x^2+1}$		
5	The derivative of $\ln(\tanh x)$ is :	(A) $\frac{1}{\tanh x}$	(B) $\frac{\sec h^2 x}{\tanh x}$		
		(C) $\sec h^2 x$	(D) $\sec h x$		
6	$x = at^2$ and $y = 2at$ are parametric equations of :	(A) Parabola	(B) Ellipse		
		(C) Circle	(D) Hyperbola		
7	If $y^2 + x^2 = a^2$, then $\frac{dy}{dx} = :$	(A) $-\frac{x}{y}$	(B) $-\frac{y}{x}$		
		(C) $\frac{x}{y}$	(D) $\frac{y}{x}$		
8	The order of $\frac{dy}{dx} = \frac{4}{3}x^3 + x - 3$ is :	(A) 1	(B) $\frac{3}{4}$		
		(C) $\frac{4}{3}$	(D) -3		
9	$\int_a^x 3x^2 dx = :$	(A) $x^3 + a^3$	(B) $x^3 - a^3$		
		(C) $3x^3$	(D) x^3		

1-10	If θ is measured in radian then $\lim_{\theta \rightarrow 0} \frac{\sin 7\theta}{\theta} = :$			
	(A) 7	(B) $\frac{1}{7}$	(C) $\frac{7\pi}{22}$	(D) $\frac{7\pi}{12}$
11	The measure of the angle between the lines $ax^2 + 2hxy + by^2 = 0$ is given by $\tan \theta = :$			
	(A) $\frac{\sqrt{h^2 - ab}}{a-b}$	(B) $\frac{2\sqrt{h^2 - ab}}{a+b}$	(C) $\frac{h^2 - ab}{a+b}$	(D) ∞
12	If $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ then $\vec{a} \cdot \vec{b} = :$			
	(A) 0	(B) 1	(C) -1	(D) $\sqrt{2}$
13	The feasible solution which maximize or minimize the objective function is called :			
	(A) Boundary	(B) Half plane	(C) Optimal solution	(D) Initial values
14	The value of c for $\frac{y^2}{16} - \frac{x^2}{49} = 1$ is :			
	(A) 16	(B) 49	(C) 65	(D) $\sqrt{65}$
15	The equation of a straight line represented by $x \cos \alpha + y \sin \alpha = P$ is called :			
	(A) Normal form	(B) Angular form		
	(C) Symmetric form	(D) P-form		
16	The unit vector in the direction of $\vec{v} = [3, -4] :$			
	(A) $5[3, -4]$	(B) $\frac{1}{5}[3, -4]$	(C) \hat{i}	(D) \hat{j}
17	The points A (-5, -2), B (5, -4) are ends point of a diameter of the circle. The centre will be :			
	(A) (0, 3)	(B) (0, -3)	(C) (5, 2)	(D) (-5, 4)
18	$xy = 0$ represents :			
	(A) A pair of lines	(B) Hyperbola	(C) Parabola	(D) Ellipse
19	The projection of \vec{v} along \vec{u} is :			
	(A) $\frac{\vec{u} \cdot \vec{v}}{ \vec{u} }$	(B) $\frac{\vec{u} \cdot \vec{v}}{ \vec{v} }$	(C) $\frac{\vec{u} \cdot \vec{v}}{ \vec{u} \vec{v} }$	(D) $\frac{\vec{u} \cdot \vec{v}}{ \vec{u} + \vec{v} }$
20	An angle inscribed in a semi-circle is :			
	(A) 0	(B) $\frac{\pi}{2}$	(C) π	(D) 2π