

4. Write short answers to any NINE (9) questions :

- Find the coordinates of the point that divides the join of A (-6, 3) and B (5, -2) internally in ratio 2 : 3.
- Find the slope and inclination of the line joining the points A (-2, 4) and B (5, 11).
- By means of slopes show that points A (-1, -3), B (1, 5) and C (2, 9) are collinear.
- Find equation of the line through (-4, 7) and parallel to the line $2x - 7y + 4 = 0$.
- Find equation of circle with centre at (5, -2) and radius 4.
- Find focus and vertex of the parabola $y^2 = -8(x-3)$.
- Find equation of tangent to the parabola $x^2 = 16y$ at the point whose abscissa is 8.
- Find foci and vertices of the ellipse $25x^2 + 9y^2 = 225$.
- Find the angle between the vectors $\underline{u} = 2\underline{i} - \underline{j} + \underline{k}$ and $\underline{v} = -\underline{i} + \underline{j}$.
- Find scalar α so that the vectors $2\underline{i} + \alpha\underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha\underline{k}$ are perpendicular.
- If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{j} = 0$, $\underline{v} \cdot \underline{k} = 0$ find \underline{v} .
- Prove that $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b}) = 0$.
- Find the value of α so that $\alpha\underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} - 2\underline{k}$ are coplanar.

SECTION - II

Note : Attempt any THREE questions.

5. (a) If $f(x) = \begin{cases} 3x & \text{if } x \leq -2 \\ x^2 - 1 & \text{if } -2 < x < 2 \\ 3 & \text{if } x \geq 2 \end{cases}$

discuss continuity at $x = 2$ and $x = -2$.

(b) If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.

6. (a) Integrate $\int \frac{12}{x^3 + 8} dx$

(b) Find equations of two parallel lines, perpendicular to $2x - y + 3 = 0$ such that the product of the x- and y-intercepts of each is 3.

7. (a) Evaluate the definite integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x(2 + \sin x)} dx$

(b) Minimize $z = 2x + y$ subject to the constraints

$$x + y \geq 3, \quad 7x + 5y \leq 35, \quad x \geq 0, \quad y \geq 0$$

8. (a) Find equation of the line through the point (2, -9) and intersection of the lines

$$2x + 5y - 8 = 0$$

$$3x - 4y - 6 = 0$$

(b) Show that the circles $x^2 + y^2 + 2x - 2y - 7 = 0$ and $x^2 + y^2 - 6x + 4y + 9 = 0$ touch externally.

9. (a) Find an equation of the ellipse having foci $(\pm 5, 0)$ and passing through the

$$\left(\frac{2}{3}, \sqrt{3} \right)$$

(b) A particle acted upon by constant forces $4\underline{i} + \underline{j} - 3\underline{k}$ and $3\underline{i} - \underline{j} - \underline{k}$ is displaced from A (1, 2, 3) to B (5, 4, 1). Find the work done.