

SECTION – I

2. Write short answers to any EIGHT (8) questions : 16

- (i) Given that $f(x) = \cos x$ find $\frac{f(a+h)-f(a)}{h}$ and simplify.
- (ii) If $f(x) = (-x+9)^3$, find $f^{-1}(x)$
- (iii) By rationalizing, find $\lim_{x \rightarrow 0} \frac{\sqrt{x+a} - \sqrt{a}}{x}$
- (iv) Write down the domain and range of $f(x) = 2x - 5$
- (v) Calculate derivative of $f(x) = x^{\frac{2}{3}}$ at $x = 8$
- (vi) Find derivative of $\frac{1+x}{1-x}$ w.r.t. x
- (vii) If $y = x^4 + 2x^2 + 2$, find $\frac{dy}{dx}$
- (viii) Find $\frac{dy}{dx}$ of implicit function $x^2 - 4xy - 5y = 0$
- (ix) Apply chain rule to find $\frac{dy}{du}$ if $y = x^2 + \frac{1}{x^2}$ and $u = x - \frac{1}{x}$
- (x) Differentiate $\sin^2 x$ w.r.t $\cos^4 x$
- (xi) Find $f'(x)$ if $f(x) = x^3 e^{\frac{1}{x}}$
- (xii) Find y_2 if $y = x^2 \cdot e^{-x}$

3. Write short answers to any EIGHT (8) questions : 16

- (i) Using differential to find $\frac{dx}{dy}$ of $x^4 + y^2 = xy^2$
- (ii) Evaluate $\int (2x+3)^{\frac{1}{2}} dx$
- (iii) Evaluate $\int x \sqrt{x-a} dx$
- (iv) Evaluate $\int (\ln x)^2 dx$
- (v) Evaluate $\int_1^2 \left(x + \frac{1}{x} \right)^{\frac{1}{2}} \left(1 - \frac{1}{x^2} \right) dx$
- (vi) Find the area bounded by cos function from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$
- (vii) Solve $\frac{dy}{dx} + \frac{2xy}{2y+1} = x$
- (viii) Find the mid-points of the line joining the two points A (- 8, 3), B (2, - 1).
- (ix) Find h such that the points A (- 1, h), B (3, 2) and C (7, 3) are collinear.
- (x) In the triangle A (8, 6), B (-4, 2), C (-2, -6), find the slope of altitude of triangle.
- (xi) Using slopes, show that the triangle with vertices A (6, 1), B (2, 7), C (-6, -7) is a right triangle.
- (xii) Find the point of intersection of the lines $x + 4y - 12 = 0$
 $x - 3y + 3 = 0$

4. Write short answers to any NINE (9) questions :

- (i) Define feasible region.
- (ii) Graph the solution set of $5x - 4y \leq 20$
- (iii) Write the standard and general equation of circle.
- (iv) Find centre and radius of $5x^2 + 5y^2 + 24x + 36y + 10 = 0$
- (v) Check the position of the point $(5, 6)$ with respect to the circle $x^2 + y^2 = 81$
- (vi) Find the length of the tangent drawn from the point $(-5, 4)$ to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$
- (vii) Find foci and eccentricity of ellipse $x^2 + 4y^2 = 16$
- (viii) Find the points of intersection of $x^2 + y^2 = 8$ and $x^2 - y^2 = 1$
- (ix) If $\underline{u} = 2\mathbf{i} - 7\mathbf{j}$, $\underline{v} = \mathbf{i} - 6\mathbf{j}$ and $\underline{w} = -\mathbf{i} + \mathbf{j}$, find $\frac{1}{2}\underline{u} + \frac{1}{2}\underline{v} + \frac{1}{2}\underline{w}$
- (x) Find a vector whose magnitude is 4 and is parallel to $2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$
- (xi) Find α so that the vector \underline{u} and \underline{v} are perpendicular; $\underline{u} = \alpha\mathbf{i} + 2\alpha\mathbf{j} - \mathbf{k}$ and $\underline{v} = \mathbf{i} + \alpha\mathbf{j} + 3\mathbf{k}$
- (xii) Find the area of parallelogram whose vertices are $A(1, 2, -1)$; $B(4, 2, -3)$; $C(6, -5, 2)$; $D(9, -5, 0)$
- (xiii) Prove that $\underline{u} \cdot (\underline{v} \times \underline{w}) + \underline{v} \cdot (\underline{w} \times \underline{u}) + \underline{w} \cdot (\underline{u} \times \underline{v}) = 3\underline{u} \cdot (\underline{v} \times \underline{w})$

SECTION - II

Note : Attempt any THREE questions.

5. (a) Evaluate $\lim_{x \rightarrow 0} \frac{\sec x - \cos x}{x}$ 5
5. (b) Find the derivative w.r.t. x $\sin \sqrt{\frac{1+2x}{1+x}}$ 5
6. (a) If $y = (\cos^{-1} x)^2$, prove that $(1-x^2)y_2 - xy_1 - 2 = 0$ 5
6. (b) Evaluate $\int \frac{2x}{1-\sin x} dx$ 5
7. (a) Find the area between the x-axis and the curve $y = \sqrt{2ax - x^2}$ when $a > 0$ 5
7. (b) Maximize $f(x, y) = 2x + 5y$ subject to the constraints $2y - x \leq 8$; $x - y \leq 4$, $x \geq 0$, $y \geq 0$ 5
8. (a) Find equation of the circle passing through the points $A(3, -1)$, $B(0, 1)$ and having centre at $4x - 3y - 3 = 0$ 5
8. (b) Use vectors to prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ 5
9. (a) Mid-points of sides of triangle are $(1, -1)$, $(-4, -3)$ and $(-1, 1)$. Find coordinates of vertices of triangle. 5
9. (b) Show that equation of parabola with focus at $(a \cos \alpha, a \sin \alpha)$ and directrix $x \cos \alpha + y \sin \alpha + a = 0$ is $(x \sin \alpha - y \cos \alpha)^2 = 4a(x \cos \alpha + y \sin \alpha)$ 5