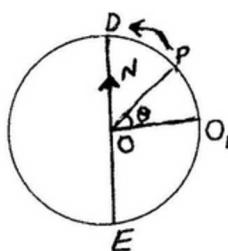


SECTION – I

2. Write short answers to any EIGHT (8) questions :


16

- (i) What are two major types of errors, explain them with examples?
- (ii) Give any two rules for significant figures.
- (iii) Find the dimensions of gravitational constant G in the formula $F = G \frac{m_1 m_2}{r^2}$
- (iv) Find the uncertainty in a timing experiment of 30 vibrations completed in 54.6 sec. and the timing device has the least count 0.1 sec.
- (v) Under what circumstances would a vector have components that are equal in magnitude?
- (vi) How would you prove equilibrium of coplanar forces?
- (vii) Analyse the net increase in the value of vector product when angle between two vectors are changed from 0° to 60° .
- (viii) Why do we wear seat belts? Use an equation to support your answer.
- (ix) Mention the points in the path of a projectile for minimum and maximum speed.
- (x) An object is thrown vertically upward, discuss the sign of acceleration due to gravity, relative to velocity, while the object is in air.
- (xi) How pollution can be reduced? Use mass transportation and energy methods to support your answer.
- (xii) A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?

3. Write short answers to any EIGHT (8) questions :

16

- (i) Why mud flies off the tyre of a moving bicycle, in what direction does it fly?
- (ii) What are the artificial satellites?
- (iii) Show that orbital angular momentum $L_o = mvr$
- (iv) Differentiate between tangential and angular velocity, how both are related to each other?
- (v) What do you understand about the term viscosity?
- (vi) How do you describe the behaviour of an ideal fluid flow?
- (vii) On what factors does frequency of a simple pendulum depends?
- (viii) If a mass-spring system vibrates, during vibration if potential energy increases what do you conclude about total energy?
- (ix) Locate the position of pointer 'P' along with vibrating point 'N' at different instant of time period.

- (x) Why does sound travel faster in solids than in gases?
- (xi) Describe the phenomenon of sound speed regardless of temperature in air.
- (xii) If stationary waves are set up in an organ pipe with both open ends, how does frequency varies with length of pipe?

4. Write short answers to any SIX (6) questions :

- (i) Give two applications of Bragg's equation.
- (ii) Under what conditions two or more sources of light behave as coherent sources?
- (iii) Can visible light produce interference fringes? Explain.
- (iv) Use Snell's law to calculate critical angle for glass air boundary. Make a diagram to support your answer.
- (v) Make the ray diagrams of compound microscope and astronomical telescope.
- (vi) Define resolving power and give its at least two formulae.
- (vii) Give the interpretation of temperature by using pressure of gas equation.
- (viii) How do you describe the all processes of strokes for petrol engine?
- (ix) Give an example of a natural process that involves an increase in entropy.

SECTION - II

Note : Attempt any THREE questions.

5.	(a) Define projectile motion. Derive relation for :	
	(i) Time of flight (ii) Range (iii) Maximum height	5
	(b) Find the angle between two forces of equal magnitude when the magnitude of their resultant is also equal to the magnitude of either of these forces.	3
6.	(a) Discuss stationary waves in an air column. Also discuss different modes of vibrations in an open organ pipe.	5
	(b) How large a force is required to accelerate an electron ($m = 9.11 \times 10^{-31} \text{ kg}$) from rest to speed of $2 \times 10^7 \text{ ms}^{-1}$ through a distance of 5 cm?	3
7.	(a) What is artificial gravity? Derive an expression for frequency of space-ship to provide the artificial gravity.	5
	(b) A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place where $g = 9.8 \text{ ms}^{-2}$?	3
8.	(a) How does the efficiency of a carnot engine is calculated?	5
	(b) What gauge pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m?	3
9.	(a) What is meant by diffraction of light? Also discuss the diffraction of light through a narrow slit?	5
	(b) A simple astronomical telescope in normal adjustment has an objective of focal length 100 cm and an eye piece of focal length 5.0 cm.	3
	(i) Where is the final image formed? (ii) Calculate the angular magnification.	