

MATHEMATICS (Subjective) Group - I

Time: 02:30 Hours Marks: 80

SECTION - I

2. Attempt any EIGHT parts:

16

- (i) Show that parametric equations $x = a \cos \theta$, $y = b \sin \theta$ represent the equation of Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- (ii) If $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x^2}$, find $(fog)(x)$
- (iii) Evaluate the limit: $\lim_{x \rightarrow 0} \frac{\sin ax}{\sin bx}$
- (iv) Discuss the continuity of $f(x) = \begin{cases} 2x+5, & x \leq 2 \\ 4x+1, & x > 2 \end{cases}$ at $x = 2$
- (v) Use definition to find the derivative of $x(x-3)$ w.r.t. 'x'
- (vi) Differentiate $x^4 + 2x^3 + x^2$ w.r.t. 'x'
- (vii) Differentiate $(1+x^2)^n$ w.r.t. x^2
- (viii) Find $\frac{dy}{dx}$ when $x = y \sin y$
- (ix) If $y = e^{-2x} \sin 2x$, find $\frac{dy}{dx}$
- (x) Find $\frac{dy}{dx}$ when $y = \sinh^{-1}(x^3)$
- (xi) Use Maclaurin Series to prove that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$
- (xii) Find the interval where $f(x) = 4 - x^2$, $x \in (-2, 2)$ is increasing or decreasing in the given domain.

3. Attempt any EIGHT parts:

16

- (i) Use differentials, find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ of $x^2 + 2y^2 = 16$
- (ii) Evaluate $\int \sin^2 x \, dx$
- (iii) Find $\int \frac{dx}{x(\ln 2x)^2}$
- (iv) Evaluate $\int \sin^{-1} x \, dx$
- (v) Evaluate $\int_1^2 \ln x \, dx$
- (vi) Find area above the x-axis, bounded by curve $y^2 = 3 - x$ from $x = -1$ to $x = 2$
- (vii) Solve differential equation $1 + \cos x \tan y \frac{dy}{dx} = 0$
- (viii) Find point three-fifth of way along the line segment from $A(-5, 8)$ to $B(5, 3)$
- (ix) Two points P and O' are given in xy-coordinate system. Find XY-coordinates of P . $P\left(\frac{3}{2}, \frac{5}{2}\right)$; $O'\left(-\frac{1}{2}, \frac{7}{2}\right)$
- (x) Find an equation of line through $(-4, -6)$ and perpendicular to the line having slope $-\frac{3}{2}$
- (xi) Express the system $3x + 4y - 7 = 0$, $2x - 5y + 8 = 0$, $x + y - 3 = 0$ in matrix form and check whether three lines are concurrent.
- (xii) Find lines represented by $x^2 - 2xy \sec \alpha + y^2 = 0$

(Continued P/2)

4. Attempt any NINE parts:

- (i) Graph the solution set of linear inequality $5x - 4y \leq 20$ in xy -plane.
- (ii) Define corner point of solution region.
- (iii) Find center and radius of the circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$
- (iv) Find equation of parabola whose focus is $F(-3, 4)$ and directrix is $3x - 4y + 5 = 0$
- (v) Find length of the tangent drawn from the point $(-5, 4)$ to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$
- (vi) Find focus and vertices of Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$
- (vii) Find equation of tangent to conic $y^2 = 4ax$ at $(at^2, 2at)$
- (viii) Find equation of hyperbola with center $(0, 0)$, focus $(6, 0)$ vertex $(4, 0)$.
- (ix) If O is origin and $\overrightarrow{OP} = \overrightarrow{AB}$, find the point P when A and B are $(-3, 7)$ and $(1, 0)$ respectively.
- (x) Find direction cosines of vector $\underline{u} = \underline{i} - \underline{j} - \underline{k}$
- (xi) Find cosine of the angle θ between vectors $\underline{u} = 3\underline{i} + \underline{j} - \underline{k}$, $\underline{v} = 2\underline{i} - \underline{j} + \underline{k}$
- (xii) A force $\underline{F} = 7\underline{i} + 4\underline{j} - 3\underline{k}$ is applied at $P(1, -2, 3)$, find its moment about $Q(2, 1, 1)$
- (xiii) Find the volume of the parallelepiped determined by $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$, $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$, $\underline{w} = \underline{i} - 7\underline{j} - 4\underline{k}$

SECTION – II

Attempt any THREE questions. Each question carries 10 marks.

5. (a) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$, find the value of 'k' so that f is continuous at $x = 2$. 05
- (b) Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ 05
6. (a) Show that $y = x^x$ has minimum value at $x = \frac{1}{e}$ 05
- (b) Evaluate: $\int \frac{dx}{(1+x^2)^{3/2}}$ 05
7. (a) Find the area between x -axis and curve $y = \sqrt{2ax - x^2}$, when $a > 0$ 05
- (b) Minimize $z = 3x + y$; subject to constraints $3x + 5y \geq 15$; $x + 3y \geq 9$, $x, y \geq 0$ 05
8. (a) Find the length of the chord cut off from the line $2x + 3y = 13$ by the circle $x^2 + y^2 = 26$ 05
- (b) Use vector method to show that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ 05
9. (a) Write an equation of the parabola with given elements:
Focus $(-3, 1)$; directrix $x - 2y - 3 = 0$ 05
- (b) Find the distance between the given parallel lines. Sketch the lines. Also find an equation of the parallel line lying midway between them:
 $3x - 4y + 3 = 0$; $3x - 4y + 7 = 0$ 05